

Detectors for LAT

Regina Caputo UMD/NASA/GSFC Fermi Summer School Lewes, DE

May 31, 2018

The Fermi-LAT Modular design, 3 subsystems

Dermi

Gamma-ray Space Telescope

The Fermi-LAT Modular design, 3 subsystems

Tracker Silicon detectors Convert γ to e^{+/-}

Dermi

Gamma-ray Space Telescope

Reconstruct γ direction

The Fermi-LAT Modular design, 3 subsystems

Tracker Silicon detectors Convert γ to e^{+/-} Reconstruct γ direction

Dermi

Gamma-ray Space Telescope

Calorimeter CsI scintillating crystal logs Measure energy of γ and e^{+/-} Image and separate EM/had. showers

Tracker Silicon detectors Convert γ to e^{+/-} Reconstruct γ direction

erm.

Gamma-ray Space Telescope

Anti-Coincidence Detector Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of γ and e^{+/-} Image and separate EM/had. showers

Tracker Silicon detectors Convert γ to e^{+/-} Reconstruct γ direction

Gamma-ray

Trigger rate: ~10 kHz read out: ~400 Hz Anti-Coincidence Detector Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of γ and e^{+/-} Image and separate EM/had. showers

Tracker Silicon detectors Convert γ to e^{+/-} Reconstruct γ direction

Gamma-ray pace Telescope

Trigger rate: ~10 kHz read out: ~400 Hz **Anti-Coincidence Detector** Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of γ and e^{+/-} Image and separate EM/had. showers

 γ -ray data made public within 24 hours

Tracker Silicon detectors Convert γ to e^{+/-}

Gamma-ray

Reconstruct γ direction

Anti-Coincidence Detector Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of γ and e^{+/-} Image and separate EM/had. showers

Trigger

rate: ~10 kHz read out: ~400 Hz

LAT Detector discussion continues NOW...

 γ -ray data made public within 24 hours

• Particle interactions in general

- The Standard Model
- Particle interactions in matter
 - Detectors for different particles and interactions
 - Charged particles
 - Ionization, Bremsstrahlung, Scattering, Cherenkov,
 - Photons Specifically
 - Photoelectric effect, Compton scattering, pair production
- Detectors!

Gamma-ray pace Telescope

• Tracking, Calorimeters

A Valuable Resource

1957 2017	PDC particle data gro	Z ^{KD}	http://pdg.lbl.gov				
	About PDG	PDG Aut	thors	PDG Citation	News	Contact Us	
The Review of Particle Physics (2017) C. Patrignani <i>et al.</i> (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update. pdgLive - Interactive Listings							
			Summary Tables				
			Reviews, Tables, Plots				
			Particle Listings				
46			Sear	rch			

Covers particle properties, particle physics, astrophysics, statistics... *everything*

R. Caputo | UMD/NASA/GSFC

Dermi

Gamma-ray Space Telescope

A Valuable Resource

Covers particle properties, particle physics, astrophysics, statistics... *everything*

R. Caputo | UMD/NASA/GSFC

Gamma-ray Space Telescope

R. Caputo | UMD/NASA/GSFC

R. Caputo | UMD/NASA/GSFC

R. Caputo | UMD/NASA/GSFC

R. Caputo | UMD/NASA/GSFC

R. Caputo | UMD/NASA/GSFC

Dermi

R. Caputo | UMD/NASA/GSFC

R. Caputo | UMD/NASA/GSFC

- •Goal: design detectors to utilize the way these particles interact via these forces...
- •A few notes (Feynman diagram cheat sheet)

Ionization

What happens

- •Goal: design detectors to utilize the way these particles interact via these forces...
- •A few notes (Feynman diagram cheat sheet)

- •Goal: design detectors to utilize the way these particles interact via these forces...
- •A few notes (Feynman diagram cheat sheet)

- •Goal: design detectors to utilize the way these particles interact via these forces...
- •A few notes (Feynman diagram cheat sheet)

Electromagnetic interactions

https://physics.stackexchange.com/questions/66309/do-excited-electrons-drop-back-to-same-quantum-state

Dermi

Gamma-ray Space Telescope

Charged particle interactions in matter

Ionization Energy: Energy required to remove outermost electron

Increases

Dermi

Gamma-ray Space Telescope

- •What to keep in mind:
 - –Energy of the incoming charged particle (β)
 - -Charge of the incoming charged particle
 - -Nuclear charge of the target material (Z)
 - Density of the target material (ρ)

Bethe-Bloch equation

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Z: Atomic Number of target material
A: Atomic Mass of target material
I: Mean excitation Energy
z: charge of incident particle
T_{max}: is the maximum kinetic energy which can be imparted to a free electron in a single collision

Gamma-ray

R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018

Bremsstrahlung

Bremsstrahlung is radiation due to hard Coulomb interactions of a particle with atomic nuclei ("braking radiation")

High-energy electrons predominantly lose energy in matter by bremsstrahlung

Gamma-rav pace Telescope

dE

dx

Cherenkov Radiation

Dermi

Back to business: Photons in Matter

Photons in Matter

Low Energy: Photoelectric Effect

Medium Energy: Compton (Rayleigh/Thompson) Scattering

High Energy: Pair Production

R. Caputo | UMD/NASA/GSFC

Gamma-ray

Photon absorbed by atom; electron excited or ejected Photon energy > binding energy

σ =const.×Zⁿ/E³

Note: photoelectric effect and Brems. must occur in the field of the nucleus

Derm!

Gamma-ray Space Telescope

Photon absorbed by atom; electron excited or ejected Photon energy > binding energy

σ =const.×Zⁿ/E³

Note: photoelectric effect and Brems. must occur in the field of the nucleus

erm!

Compton Scattering

Eetfinit

Elastic scattering of photon and electron
Can be useful for photon detection
HOWEVER... changes photon direction

Gamma-ray Space Telescope

Low-energy limit is energy independent

-Scattering off single electrons: Thomson scattering

-Coherent scattering off bound electrons: Rayleigh scattering -both elastic

R. Caputo | UMD/NASA/GSFC

Compton Scattering

Compton Scattering

Photons interact with individual electrons

• Photon is converted to an electron-positron pair

- •Cross section rises quickly
- •At high energy, mean free path for pair production is X₀*9/7
- Opening angle between electron and positron decreases with photon energy

Pair Production

• Photon is converted to an electron-positron pair

- •Cross section rises quickly
- •At high energy, mean free path for pair production is X₀*9/7
- Opening angle between electron and positron decreases with photon energy

Pair Production

• Photon is converted to an electron-positron pair

- •Cross section rises quickly
- •At high energy, mean free path for pair production is X₀*9/7
- Opening angle between electron and positron decreases with photon energy

Photons interact with nucleus

Fermi Summer School 2018

Particle detectors

R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018

Detecting via Scintillation (special type of ionization)

- •While collection of ionization is difficult in solids and liquids, scintillation light can be used instead as a proxy for charge collection
- Scintillators have metastable excited states
 - -Isotropic emission, lots of photons
 - -Emitted at one or more spectral lines, not continuum
- Depending on material, amount of light is roughly linear with deposited energy in ionization
- •Large index of refraction (~1.5) promotes total internal reflection
- •Scintillators useful: calorimetry, tracking, vetos

-Can be made of plastics, inorganic solids, liquid, air

•Calorimeters (electromagnetic and hadronic)

γ or e[±]: pair production
 (occurs near nucleus) and
 bremsstrahlung alternating
 (interaction near nucleus)

p/n, π[±]: pair production
(occurs near nucleus) and
bremsstrahlung alternating
(interaction near nucleus),
color charge GLUONS!

•Calorimeters (electromagnetic and hadronic)

Atomic and nuclear properties of silicon (Si)

Atomic and nuclear properties of silicon (Si)				Atomic and nuclear properties of lead (Pb)					
Quantity	Value	Units	Value	Units	Quantity	Value	Units	Value	Units
Atomic number	14				Atomic number	82			
Atomic mass	28.0855(3)	g mole ⁻¹			Atomic mass	207.2(1)	g mole ⁻¹		
Specific gravity	2.329	g cm ⁻³			Specific gravity	11.35	g cm ⁻³		
Mean excitation energy	173.0	eV			Mean excitation energy	823.0	eV		
Minimum ionization	1.664	MeV g ⁻¹ cm ²	3.876	MeV cm ⁻¹	Minimum ionization	1.122	MeV g ⁻¹ cm ²	12.74	MeV cm ⁻¹
-									
				_					
-				_					
							-		

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018

•Calorimeters (electromagnetic and hadronic)

Atomic and nuclear properties of silicon (Si)

Quantity	Value	Units	Value	Units
Atomic number	14			
Atomic mass	28.0855(3)	g mole ⁻¹		
Specific gravity	2.329	g cm ⁻³		
Mean excitation energy	173.0	eV		
Minimum ionization	1.664	MeV g ⁻¹ cm ²	3.876	MeV cm ⁻¹
Nuclear collision length	70.2	g cm ⁻²	30.16	cm
Nuclear interaction length	108.4	g cm ⁻²	46.52	cm
Pion collision length	96.2	g cm ⁻²	41.29	cm
Pion interaction length	137.7	g cm ⁻²	59.14	cm
Radiation length	21.82	g cm ⁻²	9.370	cm

Atomic and nuclear properties of lead (Pb)

Quantity	Value	Units	Value	Units
Atomic number	82			
Atomic mass	207.2(1)	g mole ⁻¹		
Specific gravity	11.35	g cm ⁻³		
Mean excitation energy	823.0	eV		
Minimum ionization	1.122	$MeV g^{-1}cm^2$	12.74	MeV cm ⁻¹
Nuclear collision length	114.1	g cm ⁻²	10.05	cm
Nuclear interaction length	199.6	g cm ⁻²	17.59	cm
Pion collision length	137.3	g cm ⁻²	12.10	cm
Pion interaction length	226.2	g cm ⁻²	19.93	cm
Radiation length	6.37	g cm ⁻²	0.5612	cm

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

•Calorimeters (electromagnetic and hadronic)

Atomic and nuclear properties of silicon (Si)

Quantity Value Units Value Units Value Units Quantity Value Units 14 Atomic number 82 Atomic number 28.0855(3) g mole⁻¹ 207.2(1) g mole⁻¹ Atomic mass Atomic mass g cm⁻³ 2.329 g cm⁻³ Specific gravity 11.35 Specific gravity 173.0 eV Mean excitation energy 823.0 eV Mean excitation energy $MeV g^{-1}cm^2$ 3.876 $MeV cm^{-1}$ Minimum ionization 1.664 MeV g⁻¹cm² MeV cm⁻¹ Minimum ionization 1.122 12.74 g cm⁻² 70.2 30.16 cm g cm⁻² Nuclear collision length 114.1 10.05 Nuclear collision length cm g cm⁻² 108.4 46.52 cm Nuclear interaction length 199.6 g cm⁻² 17.59 Nuclear interaction length cm g cm⁻² 96.2 41.29 g cm⁻² Pion collision length 137.3 12.10 cm Pion collision length cm g cm⁻² 137.7 59.14 g cm⁻² Pion interaction length 226.2 19.93 cm Pion interaction length cm g cm⁻² 21.82 9.370 cm g cm⁻² 0.5612 cm 6.37 Radiation length Radiation length

Atomic and nuclear properties of lead (Pb)

Different materials are better at different things...

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018

Which detectors make up the LAT?

R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018

Silicon Tracker

- Tracker is 1.5 radiation lengths total on axis (63% conversion efficiency)
- 18 xy silicon planes alternating with passive tungsten converter layers Front: 12 planes with 95 μm (0.03 X₀) converter Back: 4 planes with 720 μm (0.18 X₀) converter
- •160 W power consumption (of 650 W total), compared to 1100 watt toaster
- •~1 M readout channels

Gamma-ray

Calorimeter

Measures energy deposition - contains particle shower

Each calorimeter tower: 8 layers of 12 CsI bars hodoscopic arrangement read out by photodiodes $10 X_0$ can measure the threedimensional profiles of showers permits corrections for energy leakage and capability to discriminate hadronic cosmic rays

Calorimeter

Measures energy deposition - contains particle shower

Each calorimeter tower: 8 layers of 12 CsI bars hodoscopic arrangement Atomic and nuclear properties of cesium iodide (CsI) It by photodiodes

Quantity	Value	Units	Value	Units
<z a=""></z>	0.41569			
Specific gravity	4.510	g cm ⁻³		
Mean excitation energy	553.1	eV		
Minimum ionization	1.243	MeV g ⁻¹ cm ²	5.605	MeV cm ⁻¹
Nuclear collision length	100.6	g cm ⁻²	22.30	cm
Nuclear interaction length	171.5	g cm ⁻²	38.04	cm
Pion collision length	124.7	g cm ⁻²	27.65	cm
Pion interaction length	199.0	g cm ⁻²	44.12	cm
Radiation length	8.39	g cm ⁻²	1.860	cm

asure the threeional profiles of 'S

ts corrections for y leakage and ility to discriminate nic cosmic rays

covers the array of towers, employs segmented tiles of scintillator, read out by wavelength-shifting fibers and miniature phototubes.

Elapsed Time : 0.00s No. of Gamma-rays : 0 No. of Proton CRs : 1 No. of Electron CRs : 0

Dermi

covers the array of towers, employs segmented tiles of scintillator, read out by wavelength-shifting fibers and miniature phototubes.

Elapsed Time : 0.00s No. of Gamma-rays : 0 No. of Proton CRs : 1 No. of Electron CRs : 0

Dermi

http://www.quantumdiaries.org/wp-content/uploads/2009/04/decay_chart1.gif

Dermi

Interactions with the electron shell

http://www.quantumdiaries.org/wp-content/uploads/2009/04/decay_chart1.gif

Dermi

Interactions with the electron shell nucleus

http://www.quantumdiaries.org/wp-content/uploads/2009/04/decay_chart1.gif

Derm!

Interactions with the electron shell nucleus electron shell

http://www.quantumdiaries.org/wp-content/uploads/2009/04/decay_chart1.gif

erm!

•Muons hold they key to the mysteries of the universe!

•Need to build a muon telescope!

•What do we build?

•Muons hold they key to the mysteries of the universe!

•Need to build a muon telescope!

•What do we build?

Think about the signal

•Muons hold they key to the mysteries of the universe!

•Need to build a muon telescope!

•What do we build?

Think about the signal

Think about the background

•Muons hold they key to the mysteries of the universe!

•Need to build a muon telescope!

•What do we build?

Think about the signal

Think about the background

Building the LAT

Backups

Dermi

Gamma-ray Space Telescope