The Doppler Crisis of TeV Blazars Fermi Summer School

Amar Hekalo

June 5, 2018

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 1/32

Unification Scheme

Adapted from: NASA/CXC/M.Weiss

- AGN classifications based on spectral lines, luminosity, morphology, etc.
- Unification: Only two parameters defining AGN types
 - \Rightarrow (radio-)luminosity
 - $\Rightarrow \text{ inclination angle}$
- relativistic jet in radio-loud AGN
- Low inclination angle leads to Doppler boosting

Radio Galaxies

Morphological classification by Fanaroff and Riley FR 1: log(L) < 24.5

3C449 from Perley et al., 1979

FR 2: $\log(L) > 26$

3C47 from Bridle et al., 1994

Blazars: Spectral Energy Distribution

Adapted from: Sahu et al., 2012

The Blazar Sequence

Credit: Ghisellini et al., 2017

• High-frequency-peaked BL Lac $u_{
m sp} > 10^{15}\,{
m Hz}$

Apparent Superluminal Motion

$$eta_{ ext{app}} = rac{eta_{ ext{int}} \sin(\phi)}{1 - eta_{ ext{int}} \cos(\phi)}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Ground based telescopes like H.E.S.S., MAGIC and VERITAS
- Over 200 sources listed at tevcat.uchicago.edu
- Majority of extragalactic objects are HBL
- Rapid and strong flares in several sources, e.g. PKS 2155–304, Mrk 501, Mrk 421
- Flux variability down to minutes ($\sim 600 \, \mathrm{s}$)
- Very small emitting regions \Rightarrow Heavily boosted with $\Gamma\sim 50$ and $\delta\sim 100$

Kinematic studies of HBLs

- Majority of kinematic studies by Piner and Edwards
- VLBA observations at $\sim 10 \mathrm{s\,GHz}$
- Slow apparent motions in all sources
- e.g. 2155-304: $v_{\rm app} = (0.93 \pm 0.31)c$
- modest brightness temperatures

Reproduced from Piner and Edwards, 2016

• slow apparent speeds (radio) vs. high Lorentz factors (γ) \Rightarrow Doppler Crisis

Two-Element Interferometer

Two antennas with geometrical delay au_g and baseline b_λ

Interferometer measures the complex visibility:

$$V_{ij} = \int A(\sigma) B_{
u}(\sigma) \exp(i 2\pi b_{ij,\lambda} imes \sigma) \mathrm{d}\Omega$$

The (u, v)-plane

$$V_{ij} = \int A(l,m)B_{\nu}(l,m)$$
$$\exp \left[i2\pi(ul+vm)\right] \frac{\mathrm{d}l\mathrm{d}m}{\sqrt{1-l^2-m^2}}$$

Small angle approximation:

$$V_{ij} \approx \int A(x, y) B(x, y)$$
$$\exp \left[i2\pi(ux + vy)\right] dxdy$$
$$\Rightarrow B(x, y) \stackrel{\text{FT}}{\rightleftharpoons} V(u, v)$$

< □ ▶ < ■ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q ^Q 10/32

Aperture Synthesis with Arrays

- Earth rotation synthesis: δ -dependence
- Closure relations:
 - $\phi_{ijk} = \overline{\phi}_{ij} + \overline{\phi}_{jk} + \overline{\phi}_{ki}$ • $A_{ijkl} = \frac{|\overline{V}_{ij}||\overline{V}_{kl}|}{|\overline{V}_{ik}||\overline{V}_{jl}|}$
- $V_{\text{measured}} = w(u, v) W(u, v) V(u, v)$

Figure: Credit: Burke and Graham-Smith, 2010

TANAMI

Credit: Matthias Kadler

- Tracking Active Galactic Nuclei with Austral Milliarcsecond
 Interferometry
- multiwavelength program with VLBI at its core
- Sample of Southern sources $\delta < -30\,^\circ$

The Sample

ъ

PKS 1440-389: Kinematic analysis

- HBL at 0.14 < z < 2.2
- Compact jet to southwest
- one component with $eta_{
 m app} = 0.99 \pm 0.73$
- stable flux density

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 14/32

PKS 0447-439: Kinematic analysis

- HBL (initially Seyfert I), redshift ambiguous
- superluminal component with $\beta_{app} = 5.4 \pm 2.5$
- stable flux density

PKS 2005-489: Kinematic Analysis

- radio flux density of $\sim 0.56 0.88 \, \mathrm{Jy}$
- jet difficult to model
- inner component stationary

PKS 2155-304: Kinematic Analysis

- huge flare in 2006
- variable flux density
- possible jet bending
- all comps. superluminal, fastest $\beta_{app} = 7.8 \pm 2.5$

PKS 2155-304: Jet Bending

Small-scale bending ($\sim75\,^\circ)$ in Piner et al., 2010 and large scale bending proposed in Seeg, 2017:

Small scale jet-bending at $8.4\,{\rm GHz}$ from C3 to C1 with bending of \sim 47 $^\circ$

Credit: Piner et al., 2010

PKS 0625-354: Kinematic Analysis

<ロト < 回 ト < 巨 ト < 巨 ト 一 巨 - の Q (* - 10)

Implications for the Doppler Crisis

- Previous kinematic studies on HBLs done by only one group
- Goal: independent study of Southern TeV Blazars
- Result: Mostly slow and stationary, but also superluminal components
- Distribution requires more statistical analysis
- If Doppler Crisis true: How to explain the discrepancy?

Adapted from Piner and Edwards, 2016

Problems and Models

- PKS 2155–304: $\Gamma \sim$ 50 or $\beta_{\rm int} \sim$ 0.9998
- Plotting $\beta_{app} = \frac{\beta_{int} \sin(\phi)}{1 \beta_{int} \cos(\phi)}$ for two speeds of PKS 2155-304
- $\phi \ll 1^{\circ} \Rightarrow$ Huge linear sizes $\sim 220 \,\text{Mpc}$ for $\phi \sim 0.01^{\circ}$ $\Rightarrow \phi = 10.9^{\circ}$ (Seeg, 2017)
- Tiny jet opening angles ζ
 ⇒ Seeg, 2017: ζ = 3.4°
- Single-zone model insufficient
 - Deceleration along jet axis (Georganopoulos and Kazanas, 2003)
 - Spine-Sheath model (Ghisellini et al., 2005)

Summary

- Doppler Crisis: Discrepancy of derived intrinsic Lorentz factors in the γ-rays and the small apparent speeds from kinematic anylsis in the radio-frequencies
- Aim is to perform an independent kinematic analysis for TeV blazars from the TANAMI sample
- Extended results to Piner & Edwards gained:
 - Many components stationary or subluminal
 - But: peak velocities at $\sim 8c$ and $\sim 6c$
- Further research on Doppler Crisis required
- Inclination of PKS 0625–354 restricted to be between BL Lac and FR 1
- More jet-bending in PKS 2155-304 proposed

Backup Slides

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ↔ 23/32

Doppler Beaming

Cone-shaped emission of relativistic particles with opening $\sim \Gamma^{-1}$ $D = \nu_{\rm obs} / \nu_{\rm emit}$ and $S(\nu_{\rm obs}) = D^{3-\alpha} S(\nu_{\rm emit})$ Doppler boosted Ρ ∝ν^{5/2} ∝να τ > 1 $\tau < 1$ ν

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 24/32)

Resolution

Smallest resolvable angle is given by Rayleigh criterion

$$heta \sim rac{\lambda}{D}, \quad [heta] = 1 ext{ rad}$$

Consider $\lambda = 3.5 \,\mathrm{cm}$ (radio frequencies) and $D = 100 \,\mathrm{m}$ (Effelsberg)

 $\Rightarrow \theta \approx 1.2 \operatorname{arcmin}$

But we need $\theta \lesssim 1 \,\mathrm{mas}$ for kinematics! \Rightarrow Very Long Baseline Interferometry

Two-Element Interferometer

Two antennas with geometrical delay au_g and baseline b_λ

Interferometer measures the complex visibility:

$$V_{ij} = \int A(\sigma) B_{
u}(\sigma) \exp(i 2\pi b_{ij,\lambda} imes \sigma) \mathrm{d}\Omega$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ^Q 26/32

The (u, v)-plane

$$V_{ij} = \int A(l,m)B_{\nu}(l,m)$$
$$\exp \left[i2\pi(ul+vm)\right] \frac{\mathrm{d}l\mathrm{d}m}{\sqrt{1-l^2-m^2}}$$

Small angle approximation:

$$V_{ij} \approx \int A(x, y) B(x, y)$$
$$\exp \left[i2\pi(ux + vy)\right] dxdy$$
$$\Rightarrow B(x, y) \stackrel{\text{FT}}{\rightleftharpoons} V(u, v)$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 27/32

Imaging with CLEAN and SELFCAL

Task: Deconvolution of complex visibility with dirty beam and inverse Fourer transform Method: Hybrid Imaging CLEAN algorithm from Högbom, 1974

- Place windows over brightest peaks in dirty image
- Subtraction from dirty image with gain $\gamma \leq 1$
- repeat until coherent model is found

Reduction of Errors with SELFCAL

$$\mathcal{S} = \sum_{k} \sum_{ij} w_{ij}(t_k) \left| V_{ij}^{\mathrm{cal}} - g_i(t_k) g_j^*(t_k) V_{ij}^{\mathrm{mod}}(t_k) \right|^2$$

Usage of several phase and amplitude selfcals during imaging

Inclination of PKS 0625-354

Inclination angle given by flux ratio:

$$\phi = \arccos \left[rac{1}{eta} rac{\left(rac{S_{
m jet}}{S_{
m counter}}
ight)^{rac{1}{3-lpha}} - 1}{\left(rac{S_{
m jet}}{S_{
m counter}}
ight)^{rac{1}{3-lpha}} + 1}
ight]$$

Venturi et al., 2000 computes $\phi < 61\,^\circ$ and $\phi < 43\,^\circ$ with another method

Use flux of inner two components and approximate counter-jet with 5σ

 \Rightarrow average over all epochs

$$\phi < 59^{\circ}$$

 \Rightarrow intermediate object, neither FR 1 nor BL Lac

Brightness Temperatures

2009 2010 2011 2012 2013 Date [yrs]

- Core

÷- c1

C 10¹⁰ 10¹ 10¹ 10¹ 10¹ 10¹ 2009 2010 2011 2012 2013 Dete (yrs)

PKS 1440-389

PKS 0447-439

PKS 2005-489

PKS 0625-354

Fitting with Linear Regression

Radial method and comparison with Trüstedt, 2013:

Separate x- and y- fits with subsequent norm computation:

Apparent Velocities

Two Methods: Radial velocity or vectorial method, i.e. separate *x*- and *y*-velocites

Source Name	Label	$\beta_{\rm app,rad}$	$\beta_{\rm app,vec}$
PKS 1440-389	C1	-0.03 ± 0.87	0.99 ± 0.73
PKS 0447-439	C1	4.9 ± 2.2	5.4 ± 2.5
PKS 2005-489	C1	$\textbf{0.26} \pm \textbf{0.74}$	0.31 ± 0.41
	C3	3.2 ± 2.6	4.3 ± 2.2
PKS 2155-304	C1	5.7 ± 6.0	7.4 ± 6.0
	C2	6.6 ± 3.1	7.8 ± 2.5
	C3	-1.8 ± 1.4	1.7 ± 1.4
PKS 0625-354	C1	-0.18 ± 0.49	$\textbf{0.18}\pm\textbf{0.41}$
	C2	0.11 ± 1.1	$\textbf{0.24}\pm\textbf{0.96}$
	C3	0.4 ± 1.1	1.07 ± 0.89

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ⑦ Q @ 32/32