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Abstract

In this pedagogical text aimed at those wanting to start think-
ing about or brush up on probabilistic inference, I review the rules
by which probability distribution functions can (and cannot) be com-
bined. I connect these rules to the operations performed in proba-
bilistic data analysis. Dimensional analysis is emphasized as a valu-
able tool for helping to construct non-wrong probabilistic statements.
The applications of probability calculus in constructing likelihoods,
marginalized likelihoods, posterior probabilities, and posterior predic-
tions are all discussed.

When constructing the plan or basis for a probabilistic inference—a data
analysis making use of likelihoods and also prior probabilities and posterior
probabilities and marginalization of nuisance parameters—the options are
incredibly strongly constrained by the simple rules of probability calculus.
That is, there are only certain ways that probability distribution functions
(“pdfs” in what follows) can be combined to make new pdfs, compute expec-
tation values, or make other kinds of non-wrong statements. For this reason,
it behooves the data analyst to have good familiarity and facility with these
rules.

Formally, probability calculus is extremely simple. However, it is not
always part of a physicist’s (or biologist’s or chemist’s or economist’s) edu-
cation. That motivates this document.

For space and specificity—and because it is useful for most problems I
encounter—I will focus on continuous variables (think “model parameters”
for the purposes of inference) rather than binary, integer, or discrete parame-
ters, although I might say one or two things here or there. I also won’t always
be specific about the domain of variables (for example whether a variable a
is defined on 0 < a < 1 or 0 < a < ∞ or −∞ < a < ∞); the limits of
integrals—all of which are definite—will usually be implicit.3 Along the way,
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2 Probability calculus for inference

a key idea I want to convey is—and this shows that I come from physics—
that it is very helpful to think about the units or dimensions of probability
quantities.

I learned the material here by using it; probability calculus is so simple
and constraining, you can truly learn it as you go. However if you want more
information or discussion about any of the subjects below, Sivia & Skilling
(2006) provide a book-length, practical introduction and the first few chap-
ters of Jaynes (2003) make a great and exceedingly idiosyncratic read.

1 Generalities

A probability distribution function has units or dimensions. Don’t ignore
them. For example, if you have a continuous parameter a, and a pdf p(a) for
a, it must obey the normalization condition

1 =

∫

p(a) da , (1)

where the limits of the integral should be thought of as going over the entire
domain of a. This (along with, perhaps, p(a) ≥ 0 everywhere) is almost
the definition of a pdf, from my (pragmatic, informal) point of view. This
normalization condition shows that p(a) has units of a−1. Nothing else would
integrate properly to a dimensionless result. Even if a is a multi-dimensional
vector or list or tensor or field or even point in function space, the pdf must
have units of a−1.

In the multi-dimensional case, the units of a−1 are found by taking the
product of all the units of all the dimensions. So, for example, if a is a six-
dimensional phase-space position in three-dimensional space (three cartesian
position components measured in m and three cartesian momentum compo-
nents measured in kgm s−1), the units of p(a) would be kg−3m−6 s3.

Most problems we will encounter will have multiple parameters; even if
we condition p(a) on some particular value of another parameter b, that is,
ask for the pdf for a given that b has a particular, known value to make
p(a | b) (read “the pdf for a given b”), it must obey the same normalization

1 =

∫

p(a | b) da , (2)
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but you can absolutely never do the integral

wrong:

∫

p(a | b) db (3)

because that integral would have units of a−1 b, which is (for our purposes)
absurd.4

If you have a probability distribution for two things (“the pdf for a and
b”), you can always factorize it into two distributions, one for a, and one for
b given a or the other way around:

p(a, b) = p(a) p(b | a) (4)

p(a, b) = p(a | b) p(b) , (5)

where the units of both sides of both equations are a−1 b−1. These two factor-
izations taken together lead to what is sometimes called “Bayes’s theorem”,
or

p(a | b) =
p(b | a) p(a)

p(b)
, (6)

where the units are just a−1 (the b−1 units cancel out top and bottom), and
the “divide by p(b)” aspect of that gives many philosophers and mathemati-
cians the chills (though certainly not me).5 Conditional probabilities factor
just the same as unconditional ones (and many will tell you that there is no
such thing as an unconditional probability6); they factor like this:

p(a, b | c) = p(a | c) p(b | a, c) (7)

p(a, b | c) = p(a | b, c) p(b | c) (8)

p(a | b, c) =
p(b | a, c) p(a | c)

p(b | c)
, (9)

where the condition c must be carried through all the terms; the whole right-
hand side must be conditioned on c if the left-hand side is. Again, there
was Bayes’s theorem, and you can see its role in conversions of one kind of
conditional probability into another. For technical reasons,7 I usually write
Bayes’s theorem like this:

p(a | b, c) =
1

Z
p(b | a, c) p(a | c) (10)

Z ≡

∫

p(b | a, c) p(a | c) da . (11)
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Here are things you can’t do:

wrong: p(a | b, c) p(b | a, c) (12)

wrong: p(a | b, c) p(a | c) ; (13)

the first over-conditions (it is not a factorization of anything possible) and
the second has units of a−2, which is absurd (for our purposes). Know these
and don’t do them.

One important and confusing point about all this: The terminology used
throughout this document enormously overloads the symbol p(·). That is, we
are using, in each line of this discussion, the function p(·) to mean something
different; it’s meaning is set by the letters used in its arguments. That is a
nomenclatural abomination.8 I apologize, and encourage my readers to do
things that aren’t so ambiguous (like maybe add informative subscripts), but
it is so standard in our business that I won’t change (for now).

The theory of continuous pdfs is measure theory; measure theory (for
me, anyway9) is the theory of things in which you can do integrals. You can
integrate out or marginalize away variables you want to get rid of (or, in
what follows, not infer) by integrals that look like

p(a | c) =

∫

p(a, b | c) db (14)

p(a | c) =

∫

p(a | b, c) p(b | c) db , (15)

where the second is a factorized version of the first. Once again the integrals
go over the entire domain of b in each case, and again if the left-hand side is
conditioned on c, then everything on the right-hand side must be also. This
equation is a natural consequence of the things written above and dimensional
analysis. Recall that because b is some kind of arbitrary, possibly very high-
dimensional mathematical object, these integrals can be extremely daunting
in practice (see below). Sometimes equations like (15) can be written

p(a | c) =

∫

p(a | b) p(b | c) db , (16)

where the dependence of p(a | b) on c has been dropped. This is only per-
mitted if it happens to be the case that p(a | b, c) doesn’t, in practice, depend
on c. The dependence on c is really there (in some sense), it just might be
trivial or null.
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In rare cases, you can get factorizations that look like this:

p(a, b | c) = p(a | c) p(b | c) ; (17)

this factorization doesn’t have the pdf for a depend on b or vice versa. When
this happens—and it is rare—it says that a and b are “independent” (at
least conditional on c).10 In many cases of data analysis, in which we want
probabilistic models of data sets, we often have some number N of data
an (indexed by n) each of which is independent in this sense. If for each
datum an you can write down a probability distribution p(an | c), then the
probability of the full data set—when the data are independent—is simply
the product of the individual data-point probabilities:

p({an}
N
n=1

| c) =
N
∏

n=1

p(an | c) . (18)

This is the definition of “independent data”. If all the functions p(an | c) are
identical—that is, if the functions don’t depend on n—we say the data are
“iid” or “independent and identically distributed”. However, this will not be
true in general in data analysis. Real data are heteroscedastic at the very
least.11

I am writing here mainly about continuous variables, but one thing that
comes up frequently in data analysis is the idea of a “mixture model” in
which data are produced by two (or more) qualitatively different processes
(some data are good, and some are bad, for example) that have different
relative probabilities. When a variable (b, say) is discrete, the marginalization
integral corresponding to equation (15) becomes a sum

p(a | c) =
∑

b

p(a | b, c) p(b | c) , (19)

and the normalization of p(b | c) becomes

1 =
∑

b

p(b | c) ; (20)

in both sums, the sum is implicitly over the (countable number of) possible
states of b.12

If you have a conditional pdf for a, for example p(a | c), and you want to
know the expectation value E(a | c) of a under this pdf (which would be, for
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example, something like the mean value of a you would get if you drew many
draws from the conditional pdf), you just integrate

E(a | c) =

∫

a p(a | c) da . (21)

This generalizes to any function f(a) of a:

E(f | c) =

∫

f(a) p(a | c) da . (22)

You can see the marginalization integral (15) that converts p(a | b, c) into
p(a | c) as providing the expectation value of p(a | b, c) under the conditional
pdf p(b | c). That’s deep and relevant for what follows.

Exercise 1: You have conditional pdfs p(a | d), p(b | a, d), and p(c | a, b, d).
Write expressions for p(a, b | d), p(b | d), and p(a | c, d).

Exercise 2: You have conditional pdfs p(a | b, c) and p(a | c) expressed or
computable for any values of a, b, and c. You are not permitted to multiply
these together, of course. But can you use them to construct the conditional
pdf p(b | a, c) or p(b | c)? Did you have to make any assumptions?

Exercise 3: You have conditional pdfs p(a | c) and p(b | c) expressed or
computable for any values of a, b, and c. Can you use them to construct the
conditional pdf p(a | b, c)?

Exercise 4: You have a function g(b) that is a function only of b. You have
conditional pdfs p(a | c) and p(b | a, c). What is the expectation value E(g | c)
for g conditional on c but not conditional on a?

Exercise 5: Take the integral on the right-hand side of equation (15) and
replace the “db” with a “da”. Is it permissible to do this integral? Why or
why not? If it is permissible, what do you get?
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2 Likelihoods

Imagine you have N data points or measurements Dn of some kind, possibly
times or temperatures or brightnesses. I will say that you have a “generative
model” of data point n if you can write down or calculate a pdf p(Dn | θ, I)
for the measurement Dn, conditional on a vector or list θ of parameters and
a (possibly large) number of other things I (“prior information”) on which
the Dn pdf depends, such as assumptions, or approximations, or knowledge
about the noise process, or so on. If all the data points are independently
drawn (that would be one of the assumptions in I), then the pdf for the full
data set {Dn}

N
n=1

is just the product

p({Dn}
N
n=1

| θ, I) =

N
∏

n=1

p(Dn | θ, I) . (23)

(This requires the data to be independent, but not necessarily iid.) When the
pdf of the data is thought of as being a function of the parameters at fixed
data, the pdf of the data given the parameters is called the “likelihood” (for
historical reasons I don’t care about). In general, in contexts in which the
data are thought of as being fixed and the parameters are thought of as vari-
able, any kind of conditional pdf for the data—conditional on parameters—
is called a likelihood “for the parameters” even though it is a pdf “for the
data”.13

Now imagine that the parameters divide into two groups. One group θ
are parameters of great interest, and another group α are of no interest. The
α parameters are nuisance parameters. In this situation, the likelihood can
be written

p({Dn}
N
n=1

| θ, α, I) =

N
∏

n=1

p(Dn | θ, α, I) . (24)

If you want to make likelihood statements about the important parameters
θ without committing to anything regarding the nuisance parameters α, you
can marginalize rather than infer them. You might be tempted to do

wrong:

∫

p({Dn}
N
n=1

| θ, α, I) dα , (25)

but that’s not allowed for dimensional arguments given in the previous Sec-
tion.14 In order to integrate over the nuisances α, something with units of
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α−1 needs to be multiplied in—a pdf for the α of course:

p({Dn}
N
n=1

| θ, I) =

∫

p({Dn}
N
n=1

| θ, α, I) p(α | θ, I) dα , (26)

where p(α | θ, I) is called the “prior pdf” for the α and it can depend (but
doesn’t need to depend) on the other parameters θ and the more general
prior information I. This marginalization is incredibly useful but note that it
comes at a substantial cost: It required specifying a prior pdf over parameters
that, by assertion, you don’t care about!15 Equation (26) could be called a
“partially marginalized likelihood” because it is a likelihood (a pdf for the
data) but it is conditional on fewer parameters than the original, rawest,
likelihood.

Sometimes I have heard concern that when you perform the marginal-
ization (26), you are allowing the nuisance parameters to “have any values
they like, whatsoever” as if you are somehow not constraining them. It is
true that you are not inferring the nuisance parameters, but you certainly
are using the data to limit their range, in the sense that the integral in (26)
only gets significant weight where the likelihood is large. That is, if the data
strongly constrain the α to a narrow range of good values, then only those
good values are making any (significant) contribution to the marginalization
integral. That’s important!

Because the data were independent by assumption (the full-data likeli-
hood is a product of individual-datum likelihoods), you might be tempted to
do things like

wrong:

N
∏

n=1

[
∫

p(Dn | θ, α, I) p(α | θ, I) dα

]

. (27)

This is wrong because if you do the integral inside the product, you end up
doing the integral N times over. Or another way to put it, although you
don’t want to infer the α parameters, you want the support in the marginal-
ization integral to be consistently set by all the data taken together, not
inconsistently set by each individual datum separately.

One thing that is often done with likelihoods (and one thing that many
audience members think, instinctively, when you mention the word “like-
lihood”) is “maximum likelihood”. If all you want to write down is your
likelihood, and you want the “best” parameters θ given your data, you can
find the parameters that maximize the full-data likelihood. The only really
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probabilistically responsible use of the maximum-likelihood parameter value
is—when coupled with a likelihood width estimate—to make an approximate
description of a likelihood function.16 Of course a maximum-likelihood value
could in principle be useful on its own when the data are so decisive that
there is (for the investigator’s purposes) no significant remaining uncertainty
in the parameters. I have never seen that happen. The key idea is that it is
the likelihood function that is useful for inference, not some parameter value
suggested by that function.

To make all of the above concrete, we can consider a simple example,
where measurements Dn are made at a set of “horizontal” postions xn. Each
measurement is of a “vertical” position yn but the measurement is noisy, so
the generative model looks like:

yn = a xn + b (28)

Dn = yn + en (29)

p(en) = N(en | 0, σ
2

n) (30)

p(Dn | θ, I) = N(Dn | a xn + b, σ2

n) (31)

p({Dn}
N
n=1

| θ, I) =

N
∏

n=1

p(Dn | θ, I) (32)

θ ≡ [a, b] (33)

I ≡ [{xn, σ
2

n}
N
n=1

, and so on. . . ] , (34)

where the yn are the “true values” for the heights, which lie on a straight line
of slope a and intercept b, the en are noise contributions, which are drawn
independently from Gaussians N(· | ·) with zero means and variances σ2

n, the
likelihood is just a Gaussian for each data point, there are two parameters,
and the xn and σ2

n values are considered prior information.17

Exercise 6: Show that the likelihood for the model given in equations (28)
through (34) can be written in the form Q exp(−χ2/2), where χ2 is the
standard statistic for weighted least-squares problems. On what does Q
depend, and what are its dimensions?

Exercise 7: The likelihood in equation (32) is a product of Gaussians in
Dn. At fixed data and b, what shape will it have in the a direction? That
is, what functional form will it have when thought of as being a function
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of a? You will have to use the properties of Gaussians (and products of
Gaussians).

3 Posterior probabilities

A large fraction of the inference that is done in the quantitative sciences can
be left in the form of likelihoods and marginalized likelihoods, and proba-
bly should be.18 However, there are many scientific questions the answers
to which require going beyond the likelihood—which is a pdf for the data,
conditional on the parameters—to a pdf for the parameters, conditional on
the data.

To illustrate, imagine that you want to make a probabilistic prediction,
given your data analysis. For one example, you might want to predict what
θ values you will find in a subsequent experiment. Or, for another, say some
quantity t of great interest (like, say, the age of the Universe) is a function
t(θ) of the parameters and you want to predict the outcome you expect in
some future independent measurement of that same parameter (some other
experiment that measures—differently—the age of the Universe). The distri-
butions or expectation values for these predictions, conditioned on your data,
will require a pdf for the parameters or functions of the parameters; that is,
if you want the expectation E(t |D), where for notational convenience I have
defined

D ≡ {Dn}
N
n=1

, (35)

you need to do the integral

E(t |D) =

∫

t(θ) p(θ |D, I) dθ , (36)

this in turn requires the pdf p(θ |D, I) for the parameters θ given the data.
This is called the “posterior pdf” because it is the pdf you get after digesting
the data.

The posterior pdf is obtained by Bayes rule (10)

p(θ |D, I) =
1

Z
p(D | θ, I) p(θ | I) (37)

Z ≡

∫

p(D | θ, I) p(θ | I) dθ , (38)
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where we had to introduce the prior pdf p(θ | I) for the parameters. The
prior can be thought of as the pdf for the parameters before you took the
data D. The prior pdf brings in new assumptions but also new capabilities,
because posterior expectation values as in (36) and other kinds of probabilis-
tic predictions become possible with its use.

Some notes about all this: (a) Computation of expectation values is not
the only—or even the primary—use of posterior pdfs; I was just using the
expectation value as an example of why you might want the posterior. You
can use posterior pdfs to make predictions that are themselves pdfs; this is
in general the only way to propagate the full posterior uncertainty remain-
ing after your experiment. (b) The normalization Z in equation (37) is a
marginalization of a likelihood; in fact it is a fully marginalized likelihood,
and could be written p(D | I). It has many uses in model evaluation and
model averaging, to be discussed in subsequent documents; it is sometimes
called “the evidence” though that is a very unspecific term I don’t like so
much. (c) You can think of the posterior expression (37) as being a “belief
updating” operation, in which you start with the prior pdf, multiply in the
likelihood (which probably makes it narrower, at least if your data are useful)
and re-normalize to make a posterior pdf. There is a “subjective” attitude to
take towards all this that makes the prior and the posterior pdfs specific to
the individual inferrer, while the likelihood is (at least slightly) more objec-
tive.19 (d) Many committed Bayesians take the view that you always want
a posterior pdf—that is, you are never satisfied with a likelihood—and that
you therefore must always have a prior, even if you don’t think you do. That
view is false, but it contains an element of truth: If you eschew prior pdfs,
then you are relegated to only ever asking and answering questions about
the probability of the data. You can answer questions like “what regions of
parameter space are consistent with the data?” but within the set of consis-
tent models, you can’t answer questions like “is this parameter neighborhood
more plausible than that one?”20 You also can’t marginalize out nuisance
parameters.

Although you might use the posterior pdf to report some kind of mean
prediction as discussed above, it almost never makes sense to just optimize

the posterior pdf. The posterior-optimal parameters are called the “maxi-
mum a posteriori” (MAP) parameters.21 Like the maximum likelihood pa-
rameters, these only make sense to compute if they are being used to provide
an approximation to the posterior pdf (in the form, say, of a mode and a
width).22



12 Probability calculus for inference

The key idea is that the results of responsible data analysis is not an an-

swer but a distribution over answers. Data are inherently noisy and incom-
plete; they never answer your question precisely. So no single number—no
maximum-likelihood or MAP value—will adequately represent the result of a
data analysis. Results are always pdfs (or full likelihood functions); we must
embrace that.

Continuing our example of the model given in equations (28) through
(34), if we want to learn the posterior pdf over the parameters θ ≡ [a, b],
we need to choose a prior pdf p(θ | I). In principle this should represent our
actual prior or exterior knowledge. In practice, investigators often want to
“assume nothing” and put a very or infinitely broad prior on the parameters;
of course putting a broad prior is not equivalent to assuming nothing, it is
just as severe an assumption as any other prior. For example, even if you go
with a very broad prior on the parameter a, that is a different assumption
than the same form of very broad prior on a2 or on arctan(a). The prior
doesn’t just set the ranges of parameters, it places a measure on parameter

space. That’s why it is so important.23

If you choose an infinitely broad prior pdf, it can become improper, in the
sense that it can become impossible to satisfy the normalization condition

1 =

∫

p(θ | I) dθ . (39)

The crazy thing is that—although it is not advised—even with improper
priors you can still often do inference, because an infinitely broad Gaussian
(for example) is a well defined limit of a wide but finite Gaussian, and the
posterior pdf can be well behaved in the limit. That is, posterior pdfs can
be proper even when prior pdfs are not.

Sometimes your prior knowledge can be very odd. For example, you
might be willing to take any slope a over a wide range, but require that the
line y = a x + b pass through a specific point (x, y) = (X0, Y0). Then your
prior might look like

p(θ | I) = p(a | I) p(b | a, I) (40)

p(b | a, I) = δ(b+ aX0 − Y0) , (41)

where p(a | I) is some broad function but δ(·) is the Dirac delta function, and,
implicitly, X0 and Y0 are part of the prior information I. These examples all
go to show that you have an enormous range of options when you start to
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write prior pdfs. In general, you should include all the things you know to be
true when you write your priors. With great power comes great responsibility.

In other documents in this series (for example Hogg et al. 2010a), more
advanced topics will be discussed. One example is the (surprisingly common)
situation in which you have far more parameters than data. This sounds
impossible, but the rules of probability calculus don’t prohibit it, and once
you marginalize out most of them you can be left with extremely strong
constraints on the parameters you care about. Another example is that in
many cases you care about the prior on your parameters, not the parameters
themselves. Imagine, for example, that you don’t know what prior pdf to put
on your parameters θ but you want to take it from a family that itself has
parameters β. Then you can marginalize out the θ—yes, marginalize out all
the parameters we once thought we cared about—using the prior p(θ | β, I)
and be left with a likelihood for the parameters β of the prior, like so:

p(D | β, I) =

∫

p(D | θ, I) p(θ | β, I) dθ . (42)

The parameters β of the prior pdf are usually called “hyperparameters”; this
kind of inference is called “hierarchical”.24

Exercise 8: Show that if you take the model in equations (28) through
(34) and put a Gaussian prior pdf on a and an independent Gaussian prior
pdf on b that your posterior pdf for a and b will be a two-dimensional Gaus-
sian. Feel free to use informal or even hand-waving arguments; there are no
mathematicians present.

Exercise 9: Take the limit of your answer to Exercise 8 as the width of
the a and b prior pdfs go to infinity and show that you still get a well-
defined Gaussian posterior pdf. Feel free to use informal or even hand-waving
arguments.

Exercise 10: Show that the posterior pdf you get in Exercise 9 is just a
rescaling of the likelihood function by a scalar. Two questions: Why must

there be a re-scaling, from a dimensional point of view? What is the scaling,
specifically? You might have to do some linear algebra, for which I won’t
apologize; it’s awesome.
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Exercise 11: Equation (41) implies that the delta function δ(q) has what
dimensions?
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Notes

1Copyright 2012 David W. Hogg (NYU). You may copy and distribute
this document provided that you make no changes to it whatsoever.

2It is a pleasure to thank Jo Bovy (IAS), Kyle Cranmer (NYU), Phil
Marshall (Oxford), Hans-Walter Rix (MPIA), and Dan Weisz (UW) for dis-
cussions and comments. This research was partially supported by the US
National Aeronautics and Space Administration and National Science Foun-
dation.

3In my world, all integrals are definite integrals. The integral is never just
the anti-derivative, it is always a definite, finite, area or volume or measure.
That has to do, somehow, with the fact that the rules of probability calculus
are an application of the rules of measure theory.

4To see that the units in equation (3) are a−1 b, you have to see that the
integration operator

∫

db itself has units of b (just as the derivative operator
d/db has units of b−1). Why are the units a−1 b absurd? Well, they might not
be absurd units in general, but they aren’t what we want when we integrate
a probability distribution.

5Division by zero is a huge danger—in principle—when applying Bayes’s
theorem. In practice, if there is support for the model in your data, or
support for the data in your model, you don’t hit any zeros. This sounds
a little crazy, but if you have data with unmodeled outliers—for example
if your noise model can’t handle enormous data excursions caused by rare
events—you can easily get real data sets that have vanishing probability in
a näıve model.

6There are no unconditional probabilities! This is because whenever in

practice you calculate a probability or a pdf, you are always making strong
assumptions. Your probabilities are all conditioned on these assumptions.

7The “technical reason” here that I treat the denominator in equation (10)
as a renormalization constant Z is that when we perform Markov-Chain
Monte Carlo sampling methods to obtain samples from p(a | b, c), we will not
need to know Z at all; it is usually (in practice) hard to compute and often
unnecessary.

8Serious, non-ambiguous mathematicians often distinguish between the
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name of the variable and the name of a draw from the probability distribution
for the variable, and then instead of p(a | b, c) they can write things like
pA,B=b,C=c(a), which are unambiguous (or far less ambiguous). This permits,
for example, another thing q to be drawn from the same distribution as a
by a notation like pA,B=b,C=c(q). In our (very bad) notation p(q | b, c) would
in general be different from p(a | b, c) because we take the meaning of the
function from the names of the argument variables. See why that is very
bad? Some explicit subscripting policy seems like much better practice and
we should probably all adopt something like it, though I won’t here.

Another good idea is to make the probability equations be about state-
ments, so instead of writing p(a | b, c) you write p(A = a |B = b, C = c). This
is unambiguous—you can write useful terms like p(A = q |B = b, C = c) to
deal with the a, q problem—but it makes the equations big and long.

9Have you noticed that I am not a mathematician?

10The word “independent” has many meanings in different contexts of
mathematics and probability; I will avoid it in what follows, except in context
of independently drawn data points in a generative model of data. I prefer
the word “separable” for this situation, because I think it is less ambiguous.

11I love the word “heteroscedastic”. It means “having heterogeneous noise
properties”, or that you can’t treat every data point as being drawn from the
same noise model. Heteroscedasticity is a property of every data set I have
ever used.

12In many sources, when a variable b is made discrete, because the pdf
p(b | a) becomes just a set of probabilities, the symbol “p” is often changed
to “P”. That’s not crazy; anything that makes this ambiguous nomenclature
less ambiguous is good.

13I hate the terminology “likelihood” and “likelihood for parameters” but
again, it is so entrenched, it would be a disservice to the reader not to use it.
If you really want to go down the rabbit hole, Jaynes (2003) calls the pdf for
the data a “frequency distribution” not a “probability distribution” because
he always sees the data as being fixed and reserves the word “probability”
for the things that are unknown (that is, being inferred).

14The pseudo-marginalization operation in wrong equation (25) has occa-
sionally been done in the literature, and not led to disastrous results. Why
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not? It is because that operation, though not permitted, is very very similar
to the operation you in fact perform when you do the correct marginaliza-
tion integration given in equation (26) but with a prior pdf p(α | θ, I) that
is flat in α. Implicitly, any marginalization or marginalization-like integral
necessarily involves the choice of a prior pdf.

15I will say a lot more about this in some subsequent document in this
series; in general in real-world problems you need to put a lot of care and
attention into the parts of the problem that you don’t care about; it is a
consequence of the need to make precise measurements in the parts of the
problem that you do care about.

16A probabilistic reasoner returns probabilistic information, not just some
“best” value. That applies to frequentists and Bayesians alike.

17In general, the investigator has a lot of freedom in deciding what to
treat as given, prior information, and what to treat as free parameters of the
model. If you don’t trust your uncertainty variances σ2

n, make them model
parameters! Same with the horizontal positions xn.

18I will say more about what you both gain and lose by going beyond
the likelihood in a subsequent document in this series. It relates to the
battles between frequentists and Bayesians, which tend towards the boring
and unproductive.

19Nothing in inference is ever truly objective since every generative model
involves making choices and assumptions and approximations. In particular,
it involves choosing a (necessarily very limited) model space for inference and
testing. This informs my view that it is inconsistent—as a probabilistic data
analyzer—to be a realist (Hogg, 2009). All that said, the likelihood function
is necessarily more objective than the posterior pdf.

20It is hard to live as a frequentist but it is possible. Some of the afore-
mentioned battles between frequentists and Bayesians are set off by over-
interpretation of a likelihood as a posterior pdf; in these cases the investiga-
tor is indeed unconsciously multiplying in a prior. Other battles are set off
by loose language in which a proper frequentist analysis is spoiled by over-
statement of the results as making some parameters “more probable” than
others.

21The MAP parameters include prior information, which provide a measure



18 Probability calculus for inference

on the parameters, so the MAP parameters change as the parameter space is
transformed (as coordinate transformations are applied to the parameters).
This is not true of the maximum likelihood parameters, because the likelihood
framework never makes use of any measure information.

22I have seen many cases in which investigators report the MAP parameters
instead of the maximum-likelihood (ML) parameters and describe the infer-
ence as “Bayesian”. That is pretty misleading, because neither the MAP nor
the ML is a probabilistic output, and the MAP has additional assumptions
in the form of a prior pdf. That said, the MAP value is like a “regularized”
version of the ML, and can therefore be valuable in engineering and decision
systems; more about this elsewhere.

23The insertion of the prior pdf absolutely and necessarily increases the
number of assumptions; there is no avoiding that. Bayesians sometimes like
to say that frequentists make just as many assumptions as Bayesians do.
It isn’t true: A principled frequentist—an investigator who only uses the
likelihood function and nothing else—genuinely makes fewer assumptions
than any Bayesian.

24An example of simple hierarchical inference from my own work is
Hogg et al. (2010b).
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