
ATCA-based IOC Crashes in Production
Update until 12/16/2022

Marcio Donadio / Control Systems Engineer / TID-ACS

2022

Agenda

2

Introduction

CATERS

Architecture overview

Devices used for the tests

The army behind the tests

Conclusions,
recommendations, and next
steps

Tools

IOTA 10G

rssi_network_analyzer.py

Wireshark

Details of the Problem

Trigger of the problem

Port 8194

Why looking at port 8193?

Correlation of a 100 Hz debug stream transfer and rate of crashes

Introduction

3

1

Introduction

4TID-ACS

CATERS 158662 and 160141

Different systems have been crashing in production:

● BPM IOCs are the most affected.

● Other systems also affected, but with less intensity:

○ MPS

○ BLEN

○ BCM

○ Wire Scanner

○ GMD

Error message on IOC console shows non captured exception from CPSW, complaining about timeout when trying to

access an FPGA register.

CPSW Error: CPSW Error: CPSW Error: No response -- timeout (Retries=0, Last timeout=500000): Success:

/mmio/AmcCarrierCore/AmcCarrierBsa/Bsss/currPacketSize: Success at ../BsssYaml.cc, line 69 terminate called after

throwing an instance of 'CPSWError' what(): CPSW Error: CPSW Error: No response -- timeout (Retries=0, Last
timeout=500000): Success: /mmio/AmcCarrierCore/AmcCarrierBsa/Bsss/currPacketSize: Success

Architecture Overview

5

ATCA crate overview

TID-ACS

Communication between boards happen

through the backplane which uses

Ethernet.

Switch installed in slot 1 manages

communication between boards and with

the external world.

CPU where the IOCs run is connected to

the ATCA crate through a 10 Gb/s fiber

connection.

Front side Rear side

Backplane

ATCA crate *
(lateral view)

Slot 1 (Ethernet Switch)

Slot 2

Slot 3

Slot 4

Slot 5

* RTM and all set of 7 slots not shown to make it easier to understanding

CPU

Fiber for Ethernet connection

Ethernet connection through the
backplane between switch and
boards

IOCs

Architecture Overview

6

ATCA crate overview

TID-ACS

A few protocols were created at SLAC. All

use UDP.

The firmware can handle only a few UDP

servers, each using one port, due to limited

resources of the FPGA chip.

The firmware developers defined the use of

each UDP port, which can share different

functions.

CPU

ATCA

BSA

DaqMux (2
4-channel

oscilloscope)

FPGA
registers

Debug
Stream

UDP
8194

UDP
8193

BSSS

BSAS

BLD

UDP
8198

Normal
conducting

timing
pattern

UDP
8197

Introduction

7TID-ACS

Devices used for the tests

cpu-l0b-sp02

● Crates

○ shm-l0b-sp02-1

○ shm-l0b-sp02-2

● IOCs

○ sioc-col0-bp01 until bp04 and sioc-col0-bp06

○ sioc-diag0-bp02 until bp05

○ sioc-htr-mc01

○ sioc-l0b-mp03 and sioc-l0b-mp04

cpu-sph-sp05

● Crate

○ shm-sph-sp05-1

● IOCs

○ sioc-sph-bp06 and sioc-sph-bp07

○ sioc-sph-mp05

Introduction

8TID-ACS

The army behind the tests

Marcio Donadio:

● Ernest Williams put Marcio in charge of leading and coordinating the effort.

● Analysis of the network dumps.

● Started a script to analyze the network dump and to retrieve a CPU "census" automatically.

● Conduct the tests to obtain strong correlations.

● Research of CPSW internals when trying to explain problems.

● Gathering of data from all teams involved.

Sonya Hoobler and Jeremy Mock

● Implemented the suggestions of changes in the IOCs and upgraded in production with record speed.

● Helped with the understanding of their systems and ideas to explain the root causes.

● Were always patient although the problems affect them daily (and nightly).

Matt Weaver

● Explained aspects of BSA and the timing system that helped to define how the tests could be driven.

Introduction

9TID-ACS

The army behind the tests

Larry Huckman and Ryan Herbst

● Explained the aspects of the many SLAC protocols used in transactions.

● Gave ideas for testing and tuning and important areas to check in CPSW.

● Ryan created an script based on a first version from me, which saved multiple hours of manual labor when

analyzing network dumps.

● Analysis of network dumps.

Dawood Alnajjar

● Helped with the tuning of the network driver in LinuxRT.

● Provided data from crashes in the GMD.

● Started to prepare the test stand so we can continue with the tests in January 2023.

Mike Zelazny:

● Helped to "pilot" the Matlab script that controls the fault buffer cleaning and reading so we could correlate cause

and effect for the problems (and did this during a Friday, late in the night).

Introduction

10TID-ACS

The army behind the tests

Ernest Williams:

● Hundreds of ideas that we could use for testing and description of previous experiences that could explain the

problem.

● Provided connection among different teams.

Kukhee Kim:

● Always helping with the description of internals of BSA related and timing related EPICS modules.

● Analysis of network dumps and mapping of the analysis with the source code.

Namrata Balakrishnan, Leonid Sapozhnikov, Kyle Leleux:

● All provided data regarding crashes in Wire Scanner, BCM, and BLEN.

● Leonid helped with internals of the firmware application.

● Namrata described test cases that we could use to trigger the crashes.

Total: 13 people

If I forgot someone or a fact worth mentioning, please let me know and I'll fix the slides. I'm deeply sorry if I made this

mistake.

Tools

11

2

Tools

12

IOTA 10G

TID-ACS

Network tap, which is a device that "sniffs"

the network communication between

peers and record everything.

10 Gb/s capacity.

2 TB SSD storage capacity.

Grafana dashboards with filters to get a

quick analysis of network usage.

Tools

13TID-ACS

Why IOTA instead of using tcpdump in the command line?

We opted to use a network tap instead of using tcpdump because:

● It is difficult to record the exact moment when the crash occurs.

○ We would need to let tcpdump running for a couple of hours, wishing that something happens.

○ A lot of disk space in production would be used until a crash happened.

○ Someone would need to stay permanently monitoring the crashes to stop tcpdump right after. Otherwise, if

let running overnight, dozens of GB of disk space would be used with one single dump file.

● IOTA keeps recording data 24/7:

○ Has its own SSD.

○ Auto cleans data after a period of time.

○ Records in chunks of 30 seconds, to control file size.

○ One can select a small portion of the plot by zooming in and download only the dump of that area.

● To extract reports with charts using tcpdump we would need to create a software to extract data, filter, and plot.

● Ready to use IOTA reports makes analysis of the traffic a lot simpler.

Tools

14

IOTA 10G - Grafana Interface

TID-ACS

Accessible through a web browser.

Only requirement is that the IOTA unit is

connected to the network and has port

3000 freed.

Tools

15

IOTA 10G - Connection style 1

TID-ACS

Used with cpu-sph-sp05 and

shm-sph-sp05-1.

IOTA keeps in the middle of the

communication line between CPU and

ATCA and records all transactions.

Captured data can be downloaded and

analyzed later.

Tools

16

IOTA 10G - Connection style 2

TID-ACS

Used with cpu-l0b-sp02 and

shm-l0b-sp02-2.

All traffic going to the ATCA switch is

mirrored to 2 other ports of the switch:

inbound and outbound traffic are

separated (Vadatech Switch limitation).

IOTA reads the data from the mirrored

ports and record them in the SSD.

Non invasive: IOTA can be removed

without disturbing the connection

between CPU and ATCA.

Tools

17TID-ACS

rssi_network_analyzer.py

Script started by Marcio Donadio and refactored and improved by Ryan Herbst.

● Use the network dump from IOTA.

● Decode for RSSI, SRP, and packetizer SLAC protocols.

● Prompt when something unexpected is found in the communication.

● Print dozens of packets before the problem, and a few after so one can study the scenario when the problem

occurred.

○ Printed packets are already decoded to facilitate analysis.

○ The print is added to a text file for later analysis.

● Print statistics of the overall communication for the entire dump file.

● Dump files are typically 1 to 2 GB in size and contains compressed data.

○ The script takes several hours to finish an analysis.

Tools

18

Wireshark

TID-ACS

The RSSI analyzer script shows data for

each individual UDP port.

Wireshark is used to have a more general

idea of how the traffic was among all

boards and UDP ports.

The timestamp of the problem pointed out

by the RSSI analyzer is checked in

Wireshark to get a broader picture of the

situation.

Can easily filter by UDP port and even RSSI

or SRP bytes if needed.

Details of the Problem

19

3

Details of the Problem

20

Our Main Concern - UDP
ports 8193 and 8194

TID-ACS

Port 8194 is shared between:

● BSA

● DaqMux

Port 8193 is shared between:

● FPGA register access.

● Debug stream (BPM has one per

AMC) containing:

○ Timestamp

○ A set of scalar data

○ Small waveforms (only BPMs

and GMDs use debug stream

with waveforms)

Debug stream is the way to send time

stamped data in an atomic operation.

Superconducting systems usually don’t use

the debug stream, but BPMs need it.

CPU

ATCA

BSA

DaqMux (i.e.
oscilloscope

view)

RAM
memory

FPGA
registers

Timestamp
Scalar Data

Small Waveform

Timestamp
Scalar Data

Small Waveform

BPM
Debug

Stream

UDP
8194

UDP
8193

Details of the Problem

21TID-ACS

Trigger of the problem

Transfer of fault buffer data is what triggers the problem 100% of the time.

● Mapping of the trigger was the result of a work during a Friday night with Mike Zelazny, Marcio Donadio, Ernest

Williams and Kukhee Kim.

● A Matlab process cleans one fault buffer of the systems every 15 minutes.

○ The number of fault conditions happen so frequently that after a few seconds the buffer is filled again.

● The data from the RAM memory is transferred to the software once the buffer is filled.

○ 440 MB per carrier board in 15 to 20 seconds (176 Mb/s to 234 Mb/s per board).

● Eventually one IOC will crash once the fault buffer transfer starts.

○ 100% of the crashes happened during this moment.

During the week 12/12/2022 to 12/16/2022 there was no beam and I could force faults manually.

● During the hours I was not testing, IOCs were always stable.

● When I forced a fault, eventually one IOC would crash.

● I saw no crashes out of a moment of fault buffer data transfer.

Details of the Problem

22

UDP port 8194

TID-ACS

We can configure a timeout and retries on

software so it can overcome the raise in

data to process.

We raised the timeout and retries for port

8194 and the problem improved, but was

not solved.

CPU

ATCA

BSA

DaqMux (i.e.
oscilloscope

view)

RAM
memory

FPGA
registers Timestamp

Scalar Data
Small Waveform

Timestamp
Scalar Data

Small Waveform

BPM
Debug

Stream

UDP
8194

UDP
8193Fault

Buffer
234 Mb/s

Details of the Problem

23

BSA pointer trap effect

TID-ACS

Together with the fault buffer transfer

event, randomly a BSA pointer trap event

will happen (details on this is not in the

scope of this presentation).

This is more frequent when real fault

conditions occur, but I could trigger it once

when creating manual faults.

The software keeps asking BSA data from

the firmware, apparently at a 6.5 kHz

frequency.

The software only stops requesting data

when a new fault condition happens. On

the image in the left, I left it running for 34

minutes before forcing a new fault

condition. I believe that the condition will

never stop by itself.

I couldn't correlate an increase in crashes

with the occurrence of a BSA pointer trap.

Fault buffer transferBSA pointer trap

Traffic data (bytes) x time (hour and minute of occurrence)

Details of the Problem

24TID-ACS

Why looking at port 8193?

Error message on IOC console when fault buffers are being transferred in port 8194.

● CPSW Error: CPSW Error: CPSW Error: No response -- timeout (Retries=0, Last timeout=500000): Success:

/mmio/AmcCarrierCore/AmcCarrierBsa/Bsss/currPacketSize: Success at ../BsssYaml.cc, line 69 terminate called

after throwing an instance of 'CPSWError' what(): CPSW Error: CPSW Error: No response -- timeout (Retries=0,

Last timeout=500000): Success: /mmio/AmcCarrierCore/AmcCarrierBsa/Bsss/currPacketSize: Success

● The error message shows a timeout when accessing FPGA registers. FPGA register access is in port 8193, not

8194.

● Analysis of network dumps showed that the software badly struggles when accessing data from port 8193.

○ Software sometimes signals the firmware that it is busy.

○ Software acknowledges the firmware the receipt of old packets, but not new packets.

○ One time we could see that the software sent the firmware a close-connection packet. This happens only

when the peer receives no message for 3 seconds.

● Analysis of what is happening in port 8194 during the fault buffer transferring was surprising:

○ Software handles the communication in port 8194 comfortably.

Details of the Problem

25

UDP port 8193

TID-ACS

In the case of BPM, FPGA register data and

debug streams are sent to the CPU.

The firmware sends debug streams based

on 2 triggers configurations:

1. User defined frequency (currently 10

Hz or less).

2. Calibration signal from the TPR

(currently 100 Hz).

The thread taking care of communication

in port 8193 may not be able to handle 100

Hz communication while the fault buffers

are being transferred.

CPU

ATCA

BSA

DaqMux (i.e.
oscilloscope

view)

RAM
memory

FPGA
registers Timestamp

Scalar Data
Small Waveform

Timestamp
Scalar Data

Small Waveform

BPM
Debug

Stream

UDP
8194

UDP
8193Registers

Debug stream 1 (100 Hz)
Debug stream 2 (100 Hz)

Details of the Problem

26TID-ACS

Correlation of a 100 Hz debug stream transfer and rate of crashes

With two BPM systems available for testing, I could create two testing scenarios.

● sioc-sph-bp06:

○ 2 AMC cards in the carrier board.

○ 2 debug streams.

○ Manually configured with 10 Hz trigger for debug stream and disabled calibration trigger.

● sioc-sph-bp07:

○ 1 AMC card in the carrier board.

○ 1 debug stream.

○ Manually configured with 10 Hz trigger for debug stream and 100 Hz for calibration trigger. This mimics the

current operation in production.

● FPGA register transaction timeout of 0.5 seconds (UDP port 8193).

Results:

● sioc-sph-bp06 never crashes.

● sioc-sph-bp07 crashes once for every 5 fault conditions approximately.

Conclusions, recommendations, and next steps

27

4

Conclusions, recommendations, and next steps

28TID-ACS

Conclusions and recommendations

Correlation of fault buffer transfer with crashes was proved.

● The software could reduce the bandwidth transfer of a fault buffer by limiting the frequency when it requests a

new BSA ram memory region.

● Fixing the BSA pointer trap may improve the crashes, although I couldn't correlate it with an increase in crash

rates.

Correlation of debug stream frequency and rate of crashes was proved.

● The firmware could limit the frequency of debug stream delivery to 10 Hz.

○ Currently, according to the documentation, the limitation is in the order of hundreds of Hertz.

Software modules need to implement exception handling.

● In most cases, reading a register and failing to do this should not be reason enough to have an IOC crashing.

● Although this could improve the situation by far, we observed one moment when the software closed the

connection. In this case, the error handling would not have helped.

● Need a care thinking about actions to take for a small set of registers that are key for BSA transaction in case a

register read fails.

Conclusions, recommendations, and next steps

29TID-ACS

Conclusions and recommendations

Increasing the timeout for register reading reduced the rate of crashes.

● I could verify this with the manual fault during one week of tests.

● Sonya Hoobler attested that changing the timeout to 1 second (from 100 ms) improved the crashes. Ryan Herbst

mentioned that for applications using Rogue, they concluded that 1 second was an optimal number to use.

● One approach could be to increase this number every time a crash happens until we have an optimal number.

● Ryan Herbst mentioned that it is better not to configure retries on software when reading or writing to registers.

The contribution of DaqMux to the crashes was not assessed:

● BPM doesn't use DaqMux.

● BLEN, BCM, wire scanner, and GMD use DaqMux.

I checked CPU and memory usage during fault buffer transfer and BSA pointer trap conditions and nothing abnormal

was found:

● CPU usage raised from 5% to 15%.

● Memory usage increased in 2%.

Conclusions, recommendations, and next steps

30TID-ACS

Next steps

Understand how a raise in traffic in port 8194 causes a timeout when software is communicating with port 8193.

● This needs a deep dive in the CPSW source code.

● We may have:

○ A sub-optimal architecture for the use cases we are dealing with.

○ A hidden bug.

○ A sub-optimal configuration of thread priorities in the real-time scheduler.

○ A hidden problem in the Linux kernel device driver responsible for the network (although for this case I

would expect problems when accessing other ports, too)

Implement exception handling for our modules:

● ATCACommon

● tprTrigger

● bsaDriver

Conclusions, recommendations, and next steps

31TID-ACS

Next steps

If possible and if the team agrees:

● Implement bandwidth limitation of the BSA fault buffer in software.

● Implement rate limitation of the debug stream in the BPM firmware application.

Fix the BSA pointer trap error.

Continue to increase the SRP timeout value until crashes stop.

Test how much DaqMux contributes to IOC crashes.

