
Defining Your Detector

Norman Graf / Tony Johnson
SLAC

May 10, 2005

2

Geant4 Detector Response Simulation

• Defining detectors at runtime using a single,
common executable should enable many detector
variants to be simulated and compared.

• Historically, we have limited the allowed
subdetector geometries to a few simplified shapes
and assumed topologies for flexibility. (detparms)

• Can now do this for arbitrary detector elements
using lcdd, built on top of GDML.

• Would like to bind simulation with reconstruction!
– lcdg4 & hep.lcd : detparms xml file and .ini files, resp.

3

Why another geometry format?

• LCDD is great, handles any geometry, but
– Files are large, since entry for every G4 volume
– Simple change (e.g. # layers) may require many changes to LCDD file
– Not right level of detail for reconstruction

• Compact format is less generic, but
– Files are much shorter and easier to edit
– Can handle any likely geometry/segmentation

• May require additional “drivers” to be implemented in Java
– Maintains XML advantages cited by Jeremy
– LCDD can be generated from compact format

• Goal:
– Rapid prototyping of detector geometries
– Ability to provide description of new (or existing) detectors for

reconstruction (org.lcsim)

4

GeomConverter

Compact
Description

GeomConverter

LCDD

HepRep

org.lcsim
Analysis &

Reconstruction

GODL
(future)

• Small Java program for
converting from compact
description to a variety of
other formats

5

Compact Elements

• <lccdd>
– <info>
– <define/>
– <materials/>
– <detectors/>
– <readouts/>
– <fields/>

• </lccdd>

6

<info>

<info name="sdjan03"
author="Jeremy McCormick"
version="1.0"
timestamp="2004-12-13T12:00:53"
url=“http://www.lcsim.org/detector/sdjan03">

<comment>
Test of the compact format for sdjan03 detector.

</comment>
</info>

7

<define>

<define>
<constant name="cm" value="10"/>
<!-- world -->
<constant name="world_side" value="15000" />
<constant name="world_x" value="world_side" />
<constant name="world_y" value="world_side" />
<constant name="world_z" value="world_side" />

<!-- tracking region -->
<constant name="tracking_region_radius" value="127.0*cm"/>
<constant name="tracking_region_zmax" value="168.0*cm"/>

<constant name="vertex_inner_r" value="1.2*cm"/>
<constant name="vertex_delta_r" value="1.2*cm"/>
<constant name="vertex_outer_z" value="12.5*cm"/>

</define>

• A few items are required (world_*,
tracking_region_*), rest are user defined.

8

<materials>

<materials>
<element name="Silicon_e" formula="Si" Z="14.">

<atom value="28.09" />
</element>

<material name="Polystyrene">
<D value="1.032" unit="g/cm3" />
<composite n="19" ref="Carbon_e"/>
<composite n="21" ref="Hydrogen_e" />

</material>
</materials>

• Currently all materials used must be defined, but plan
to have “standard” material file, and define only
“special” materials

9

<detectors>

<detectors>
<detector id="2" name="EMBarrel" type="CylindricalCalorimeter"

readout="EcalBarrHits">
<dimensions inner_r = "127.0*cm" outer_z = "184.0*cm" />
<layer repeat="30">

<slice material = "Tungsten" width = "0.25*cm" />
<slice material = "G10" width = "0.068*cm" />
<slice material = "Silicon" width = "0.032*cm" sensitive = "yes" />
<slice material = "Air" width = "0.025*cm" />

</layer>
</detector>

</detectors>

• Contents of detector element depends on “type”,
types are extensible, see discussion later.

10

<readouts>

<readouts>
<readout name="EcalBarrHits">

<segmentation type="ProjectiveCylinder" thetaBins=“1000“
phiBins=“2000"/>

<id>layer:7,system:3,barrel:3,theta:32:11,phi:11</id>
</readout>

</readouts>

• Contents of segmentation element depends on “type”,
types are extensible, see discussion later.

• Support projective Barrel and Endcaps, finishing
cartesian planar and fixed-z, phi cylindrical.

• IDDecoder in org.lcsim reconstruction uses same
information to convert global ⇔ local

11

<fields>

<fields>
<field type="Solenoid" name="GlobalSolenoid"

inner_field="5.0"
outer_field="-0.6"
zmax="1000"
outer_radius="144*cm+(2+1)*34*cm"/>

</fields>

• Contents of field element depends on “type”, types
are extensible, see discussion later.

12

GeomConverter Implementation

• GeomConverter provides basic functionality for
reading file.
– Plugin modules (Java classes) provide capability of

generating different types of output.
– Plugin drivers (Java classes) provide capability of

supporting different types of fields, segmentations, detector
shapes.

• GeomConverter comes with a small set of generic classes for
common cases (cylinders, polygonal, etc).

• Specialized classes can be developed if necessary for strangely
shaped detectors.

13

Dead Material

• Currently dead material can be specified as
detector with no sensitive volumes.

• In future will allow dead-material to be specified
using full GDML markup, included into LCDD
file during generation.
– Suitable for defining complex shapes such as masking

which is normally only relevant for simulation but not
reconstruction.

14

Getting GeomConverter

• Web Page:
– http://www.lcsim.org/software/geomconverter

• CVS:
– :pserver:anonymous@cvs.freehep.org:/cvs/lcd
– module GeomConverter
– After checkout use “maven” to build.

• GeomConverter integrates with org.lcsim
reconstruction framework, see tomorrow’s talk.

http://www.lcsim.org/software/geomconverter

15

Detector Repository

• Standard detector descriptions are available in the
LCDetectors package

• CVS:
– :pserver:anonymous@cvs.freehep.org:/cvs/lcd
– module LCDetectors

• Currently have sdjan03, sdfeb05, sidmay05*
• Plan to support GLD and LDC.
• Also have a template for new designs.

16

Building Geometry

>setenv CVSROOT
:pserver:anonymous@cvs.freehep.org:/cvs/lcd

>cvs login (hit enter when prompted for password)
> cvs co GeomConverter
> cvs co LCDetectors
> cd GeomConverter
> maven
> maven run
-Drun.class="org.lcsim.geometry.compact.converter.lcdd.Main"
-Dargs="../LCDetectors/detectors/sidmay05/compact.xml

sidmay05.lcdd"

17

Summary

• Compact detector description provides not only a
simpler definition of the detector, but also a binding
for the visualization and the reconstruction.

• First release of GeomConverter now available
– Tested with sdjan03, sdfeb05, sidmay05*

• Able to generate full LCDD description for SLIC
• Able to generate HepRep for display with WIRED

– Encourage others to define variants or other concepts.
• Will continue to enhance in parallel with org.lcsim

reconstruction package.

	Defining Your Detector
	Geant4 Detector Response Simulation
	Why another geometry format?
	GeomConverter
	Compact Elements
	<info>
	<define>
	<materials>
	<detectors>
	<readouts>
	<fields>
	GeomConverter Implementation
	Dead Material
	Getting GeomConverter
	Detector Repository
	Building Geometry
	Summary

