
Kalman-Based Pattern Recognition Status
• There is a pull request to put the latest code into Master.
• The latest modifications try to deal with the occasional non-

positive-definite covariance matrix of helix parameters.
• I have also made some recent improvements in removal of 

bad hits.
• Relatively recent modifications deal with low-amplitude hits 

that typically are from noise
• Don’t use low-amplitude hits when making the 5-hit seeds used to 

start the Kalman filter. This can save a lot of CPU time in large 
events that can cripple the performance with enormous 
combinatorics.

• Give low-amplitude hits low priority for getting picked up by the 
pattern recognition. This can potentially help avoid mistakes from 
picking up a noise hit instead of the true hit.



Negative Covariance
• Literature shows that this is an old problem with the Kalman formalism, 

going back to the 1960s (satellite tracking).
• Various numerical instabilities are addressed in the literature, but I have 

not found significant improvement when trying the simpler solutions. 
Already the use of 64-bit numbers makes this less of an issue than it used 
to be.

• Starting with very large initial covariance values exacerbates the problem, 
as I have previously reported.

• In general having very small hit errors relative to residuals that occur due to 
multiple scattering and mistakes makes the formalism susceptible to this 
problem.

• Usually a diagonal element is negative, so I have not tried to do a more 
rigorous and expensive test based on eigenvalues.

• It may be that the problems occur on tracks that are bad in some way (e.g. 
wrong hit). However, this supposition needs more study.

• I am dealing with the remaining problem by “fixing” the covariance and 
flagging the track internally as “bad.” The question remains whether to 
delete these before making HPS persisted tracks.



Negative Covariance
• The rate on final tracks is low and occurs in Monte Carlo as 

well as in data.
• Almost always it occurs in the Kalman smoothing process, 

not the filter process.
• 2019 data: 0.35% of tracks
• 2019 tri-trig MC: 0.33% of tracks



• The chi-square of the Kalman fit can be calculated in two ways
• Rigorous Kalman formula, which accounts for measurement errors and multiple 

scattering and ideally should have a mean of one per hit.
• Sum of squares of residuals divided by measurement error. This doesn’t account for 

multiple scattering and in principle has #d.o.f. = Nhits – 5.

• The mean on the left looks about right, whereas on the right it seems too small 
(especially given that the simple calculation does not account for scattering).

• These are generally very clean tracks, with few pattern recognition errors.

Kalman Track Chi-Squared

Simple sum of squares

Tri-Trig MC



2019 Tritrig MC Hit Residuals by Layer

Note how much larger the 
residuals are in the new 
layers than in the old.

The residuals pulls and the 
mean contributions to the 
chi-squared are about right.



2019 Tritrig MC Helix Param Pull Distributions

σ=0.999
σ=1.043

σ=1.083 σ=1.061

σ=1.098

These are a bit on the 
wide side, but not too 
bad.



Kalman Track Chi-Squared
But for 2019 data the chi-squared mean is much too large.

• Am I not using the correct alignment?

Simple sum of squares
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