

Generic Track-to-Cluster Matching in Hps-Java

Alic Spellman
02/16/2021

Intro
● Need to implement the new track-to-cluster matching algorithm (that

supports both GBL and KF Tracks) in ReconParticleDriver...
● Current matcher implementation is specific to original GBL algorithm and

does not support choosing different algorithm classes
● To support the ability to use a variety of matching algorithms in

reconstruction, I have…
– created a generic TrackClusterMatcher Interface class that all

matching algorithms extend
– created a TrackClusterMatcher Factory that allows users to select

matching algorithm by name
– edited matcher implementation in ReconParticleDriver to be as generic

as possible, supporting selection of different matching algorithms
by a simple steering-file setting

● I will show the general organization of the new TrackClusterMatcher
Interface

● I will show that these updates have not changed the output of hps-java via
hps-java Tests

Generic Track-to-Cluster Matching Implementation

● Created a matcher interface class from which all matching
algorithms will extend, via an Abstract matcher class

● You select a matching algorithm through the
TrackClusterMatcherFactory

– TrackClusterMatcherInter matcher;
– matcher = TrackClusterMatcherFactory.create(<algorithm_name>);

● Generic matcher returns a map of Tracks to matched

Clusters

TrackClusterMatcher Interface Abstract TrackClusterMatcher

Original TrackClusterMatcher Future TrackClusterMatcherNew TrackClusterMatcher

ReconParticleDriverTrackClusterMatcher Factory

Implements

extends

Factory selects which matching
algorithm to instantiate by name

Different matching algorithms are created as
extensions of Abstract Matcher

ReconParticleDriver
selects matching
algorithm by name passed
from steering-file

Integration Testing New Matcher Implementation

● Ran full suite of hps-java tests to make sure new
implementation does not change reconstruction results
as compared to Master branch

– Updated my branch and ran “mvn clean install” to
perform all tests

– Ran these same tests for the current (as of
02/15/21) master branch, for comparison

● Found 6 failures in testing my branch, but also found
6 failures when testing the master branch itself

● Perhaps my errors are not indicative of integration
issue, as we see them in the master as well…so let’s
investigate to make sure

Master

My Branch

Integration Testing New Matcher Implementation
● Running hps-java tests for both Master and my branch show the same set of

“failures”
– PhysRun2016V0ReconTest

● Expected 4892, but was 4884
● Expected 4892, but was 4884

– PhysRun2016FeeReconTest
● Expected 124, but was 115
● Expected 124, but was 115

– PhysRun2016MollerReconTest
● Expected 2223, but was 2126
● Expected 2223, but was 2126

– EngRun2015V0ReconTest
● Expected 1950, but was 1936
● Expected 1950, but was 1936

– EngRun2015FeeReconTest
● Expected 1.278 but was 1.2612
● Expected 1.278, but was 1.2612

– EngRun2015MollerReconTest
● Expected 417, but was 384
● Expected 417, but was 384

Master

My Branch

Integration Test Comparisons
● Comparing the integration

test output plots
● Plots show that the

distributions are exactly the
same

● New implementation of
Track Cluster matching
performs as expected

● All comparison plots stored
here:
/nfs/slac/g/hps3/users/alspellm
/projects/kalman/kf2016mc/tes
tTrackClusterMatching/
pass1DevFix/
integration_test_comparisons

Summary

● Hps-Java tests show that this new generic
implementation of Track-to-Cluster matching has
not changed the reconstruction output in any way

● This change will allow us to move forward using the
new KF supported matching algorithm, and any
future matching algorithms, in a very user-friendly
way

● I think this is ready to PR

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

