Frank Gaede, DESY, 2007

Improving the
LCIO/SIO file format

A Proposal

Frank Gaede
DESY, March 2007

Frank Gaede, DESY, 2007

SIO/LCIO shortcomings

LCIO/SIO fairly successful — however with growing
user community some shortcomings start to
become relevant:

no direct access

event records can't be split:

large file (event) sizes

poor /O performance when only subset of data is needed
event data can't be distributed over several files

storing user defined data:

somewhat inconvenient with LCGenericObjects
imposes performance penalty (LCGenericObjects)

using LCIO in testbeam DAQ systems requires (very)
fast /0 (as little overhead as possible)

Proposed SIO modifications

Frank Gaede, DESY, 2007

all of the described shortcomings can be addressed fairly easily
with a few minor modifications to the SIO file format:

as suggested by Tony Johnson direct access can be provided
through an additional directory record stored at the end of every file
with file pointers (long64 for >2GByte files) —
such a directory record can easily be (re)created by reading the
record headers only (no data unpacking/interpreting) provided that
we introduce a recordID (preferably 64 bit) in the header
by adding a 32bit key for a parent record one can group records into
subrecords (e.g. EventHeader + several data records)
using the existing block names to store a BlockType and BlockKey
e.g. separated by '#' on can read every block independent of type
information from a parent record (LCEventHeader)
introducing a FileHeader record with a UUID (128bit) allows to
distribute data among several files

the 'parent’ file can be found through lookup via the stored parent UUID

see next slides for implementation suggestions

Frank Gaede, DESY, 2007

Modified SIO file format

/ | Reco | SIO Record \

HdrLen: Rocord frame: Options word CompLen UncLen RecNamelen RecName
header length e Y —— compressed | uncompressed | byte length of
in bytes - P content length | content length | record name pad32(RecNamelLen)

Rec0+
new \ HdrLen
.

ParentRec
RecordID1 32bit-Hash of >

Parent RecNa@

RecordIDO
64bit

many blocks per record

BIKO+10+
pad32(BlkNamelen

Frank Gaede, DESY, 2007

Two new SIO records

FileHeader Record [uncompressed] \ allows hierarchy
first record of S'f(.)/ LCIO
j iles
o — last record
FileDirectory Record — T

record types, i.e.
subrecords

positions per
record type (name)
and ID

-> direct access

to every record !
-> allow extension
of event at the end !
allows hierarchy

A J

Note: FileDirectory record will be
rewritten at end of file with every close
after write access ! 5

Frank Gaede, DESY, 2007

) Ve

example: LCIO event split into subrecords

Fil

-

FilelID
Ea() Oxbabadede
ParentFilelD
Event 0x00000000
ReclID ParentID BlockName BlockData
0x0000000700000042 | 0x00000000 LCEvent#LCEvent Event Header data
MonteCarlo
ReclID ParentID BlockName BlockData
0x0000000700000042 [32hash(“Event”) MCParticle#MCParticle LCCollection
SimHits B
ReclD ParentID BlockName BlockData
0x0000000700000042 32hash(“Event”) SimCalorimeterHit#EcalHits LCCollection
BlockName BlockData
SimCalorimeterHit#HcalHits LCCollection /
DigiHits
ReclID ParentID BlockName BlockData
0x0000000700000042 32hash(“Event”) CalorimeterHit#CaloHits LCCollection
UserData
ReclD ParentID BlockName BlockData
0x0000000700000042 32hash(“Event”) UserClass#MyUserData LCObject

example: run 0007 event 042

» LCEvent subrecords
can be

» anywhere in the file

- identified through
ParentID and ReclID

» or even in another file

- linked through the
ParentFilelD (stored in
Event)

File1
4 Event)

ParentFilelD
Oxbabadede

ReclD
0x0000000700000042

Tracks

ReclD
0x0000000700000042

Reco.Particles

ReclD
0x0000000700000042

long64 ReclD = (evt->RunNum() << 32 | evt->EvtNum())

Frank Gaede, DESY, 2007

Features of new I/O format |

file directory provides direct access to records

direct access to specific events w/o need of fast skip
could store non event data (conditions data, histograms etc.) in
the same file
event data can be split into an arbitrary number of
records
new type#key in block name allows to read records independent
of type information in LCEventHeader
only requested records need to be read and uncompressed

the event can be extended with new collections that are added
In new records at the end of the file

non-LCIlO/user records can be read and attached to the event
(access to LCObject pointer from key)

Frank Gaede, DESY, 2007

Features of new I/O format |

event can be distributed among more than on file

can have classical HEP model DST like data hierarchy,e.g.

full simulated data (hits)

digitized hits

reconstructed (PFA) objects

high level event summary data
could store raw data from testbeam DAQ systems in

SIO/LCIO records (/0O performance !) and combine with
real LCIO later

iImportant requirements by EUDET testbeam groups

for splitting the event a new mechanism for storing
pointers is needed -> see next page

New pointer mechanism in LCIO

Frank Gaede, DESY, 2007

Current mechanism depends on SIO feature of pointer
relocation within one record

store pointedAt and pointerTo integer tags (32bits each)
proposal to use only pointerTo in SIO independent way:

store 64bit LCIOPointer type containing collectionID and index:

(hash32(colName) << 32 | collndex)

should be set by LCEvent before writting into LCObject::id

streamers simply store long64(obj->ptr->id())

need functionality in LCEvent class that replaces these links with proper
pointers (C++) / references (Java)

collisions in hash32 avoided by using hash32 values in event's collection
map

no increase in data volume for 'normal case' where every objects is only

pointed at by one other object
slight increase of data volume if objects are pointed at by several other objects

can use same streamers/data block in any 1/O format

SIO Implementation/API changes

Frank Gaede, DESY, 2007

SIO needs to provide a method for reading a record of a
given type (name), e.g:

SIOReader.readRecord(string name, long64 id=0)
if id==0 the next record of the given type is read
S1O should provide a method to read all subrecords of a given
type, e.g.
SIOReader.readSubRecords(string name, long64 id)

read all subrecords with the given id for which a suitable streamer/handler is
registered
will be used to read the next (a specific) event

the FileHeader record should be created automatically when a
new file is opened for writing

the FileDirectory records needs to be created and written
automatically at the close()

the open(“file”,”read”) needs to read the FileDirectory record and
optionally (re)create it in case it doesn't exist (e.g.l/O error on a
previous close()) 10

LCIO Implementation/AP| changes |

Frank Gaede, DESY, 2007

LCWriter needs to provide an (optional) way of configuring how the
event is going to be split into records, e.g.

LCWriter.addSubrecord(“MonteCarlo”,LCIO::MCPARTICLE) ;
all MCParticle collections (typically one) will be written to the record MonteCarlo

LCWriter.addSubrecord(“HcalSim”,LCIO::SIMCALORIMTERHIT, “HcalBarrel”) ;
LCWriter.addSubrecord(“HcalSim”,LCIO::SIMCALORIMTERHIT, “HcalEndcap”) ;
Only the specified collections will be written to the record HcalSim
the logic for distributing the collections to records is then:

if a records has been registered for
a collection type / name combination use the corresponding record
a collection type use the corresponding record

else
use default record 'Event' ?

should provide a reasonable default setting, e.g. one record per type

users can customize the splitting according to their needs

mapping could be stored in a dedicated record at the beginning of the file
should have a print method in LCWriter and LCReader for the mapping

11

Frank Gaede, DESY, 2007

LCIO Implementation/API| changes Il

LCEventHeader needs a field for the ParentFilelD and no longer
needs the collection types and names

LCWriter needs a way to know the parent file if any,e.g

LCReader rdr ; // ...
LCWriter(“oupuitfile.slcio”, rdr) ;

will set ParentFilelD in all written event headers (typically n-1 relation
between parent and daughter files, data reduction)

LCReader needs some mechanism to automatically load parent
files if requested (postpone this for now !?) ...

LCReader needs to provide an (optional) way of specifying
which event records are going to be read, e.qg.

LCReader.readOnly(“MonteCarlo”) ;
LCReader.readOnly(“HcalSim”) ;

default will be to read all (sub)records — the first call to readOnly() will
reset the reader to reading only specified records

pointers to objects not read will be O/NULL

12

Frank Gaede, DESY, 2007

Comments ?

all of the above is a proposal suggested for further
discussion

any feedback, improvement, criticism is welcome

13

