ePixHR250M (ePixM): a soft X-ray CMOS imager for LCLS-II

December 3, 2019 L. Rota on behalf of SLAC Detector R&D Group

Outline

- Motivations
- Requirements Table
- Development
 - Concept
 - Development plan
 - Technical Approach and achievements
- Status vs Timeline
- Next steps
- Risks and Mitigation
- Outlook (Long Term)
- Management Plan
- Summary

Detector R&D

5

- ePixM project aims at developing a high-rate camera for soft X-rays scattering/imaging experiments at LCLS-II
- Key detector for:
 - Soft x-ray (SXR) resonant elastic X-ray scattering (REXS) experiments in LCLS NEH 2.2
 - X-ray Photon Correlation Spectroscopy (XPCS)
 - Other Coherent Scattering (CS) experiments

Requirements Table

REXS XPCS 1M ePixM Parameter Threshold Objective CS \checkmark \checkmark \checkmark **Pixel Pitch (um)** 50 50 50 \checkmark \checkmark Read Noise (e- rms) 15 10 12 Quantum efficiency (%, 275eV-1500eV) V V 70 90 \checkmark ~84 \checkmark \checkmark \checkmark Frame Rate (kHz) 5 10 7.5 V V V Array size (pixels) 512x512 1024x1024 1152x1152 V \checkmark Well Depth (Number of 530eV photons) 1000 3000 >1000 \checkmark Vacuum outgassing rate (torr*L/s) 2E-8 1E-8 2E-8 \checkmark \checkmark Cabling and cooling length (m) 2 4 \checkmark 100x175x75mm Physical package envelope (WxLxD, 100x175x75mm 75x150x50mm mm) \checkmark \checkmark \checkmark 200 (50*) Maximum Power dissipation (W) 100* 50

* Assuming a 512x512

Detector R&D SLAC

Detector Concept

Detector R&D

Standard modular hybrid approach

Core module architecture:

ePixM monolithic front-end

Fully depleted CMOS Image Sensor with front-end circuitry

- on-sensors amplifier reduces input detector capacitance and thus noise
- Back-thinned and back illuminated
- Entrance window optimized for soft X-rays (demonstrated)

Standard micro-bumps

Readout ASIC (ROIC)

Variant of the ePixHR back-end

- 4 arrays of 192 ADCs
- Each array is a copy of the ePixHR back-end (demonstrated)

Tiling for a 1Mpix camera

Detector R&D SLAC

Side view

1152 (active area of ~ 57.2mmx 57.2mm)

Balcony	Balcony	Balcony
Active Area	Active Area	Active Area
Active Area	Active Area	Active Area
Active Area	Active Area	Active Area
Active Area	Active Area	Active Area
Active Area	Active Area	Active Area
Active Area	Active Area	Active Area
Balcony	Balcony	Balcony

Front view

- Shingled assembly to maximize fill factor
- Overall dimensions compatible with requirements

Development plan

Detector R&D

Phased approach:

 Core Module Demonstrator assembled and characterized using ePixHR 140kPix Detector Platform + Camera Concept Study

- Down-selection with VFCCD based on Demonstrator results and Camera Concept study – end of 2020
- If selected. 1MPix camera development by end of 2021

Technical approach and achievements

- Summary of previous years
- This year achievements

Fully-depleted monolithic pixel sensor architecture

 $C_d = C_{DNW-SUB} + C_{DNW-PSUB}$ ENC $\propto \frac{g_m}{C_d}$ (thermal)

Trade-off: C_D (noise) - Area (complexity)

- HV applied on backside: full-depletion, charge collected by drift [1]
- Electronics sits in deep n-well (DNW), which also acts as collection node
- Additional deep p implant (PSUB) isolates NW (PMOS transistors) from DNW
- P-stop around pixels, guard rings at chip periphery
- Wafers thinned and back-processed (final thickness will depend on V_{breakdown})

First submission: 64x32 pixel test sensor in L-Foundry Process (see LDAC 2018 for information why L-Foundry process was selected)

Detector R&D SLAC

Pixel layout: ePix-like architecture (25um x 25um pixel)

DNW

Simplified

version of

ePix100

64x32 pixel sensor layout

Column

Analog Output

64x32 pixel sensor picture

- Prototype 64x32
- -Purpose: to evaluate technology for
- X-ray application
- -Pixel size 25x25 um²
- -Integration <10us
- -Energy range: 250 2,000 eV
- -Full scale: 280keV

Prototype results - bench test with sources

Detector R&D

SLAC

2.5ms Integration Time

1200

Prototype results - pulsed

Detector R&D

- Synchronized measurement with 50us integration
- Resolution dominated by charge sharing and partial gain calibration

Noise at LCLS integration time: 42 e⁻ (spectra at 50 us higher noise 68e⁻ but n/a for LCLS)

First prototype works with 42 e⁻ noise.

Reason was discovered, design was fixed for 2nd prototype submission:

- $V_{breakdown}$ = 20V versus the targeted 120V \rightarrow Improved guard ring & p-stop layout
- Due to low V_{breakdown}, the capacitance is much larger which impacts the noise
 → TCAD simulations with new PDK from foundry.
- Gain stages were optimized compared to the first prototype which will result in better noise performance

2nd Prototype Main design features:

- 150 nm CMOS technology
- High-resistivity substrate
- 7.5 kHz frame-rate (expandable)
- 50 µm pixel size
- 384 x 192 pixels (tileable)

• Single-photon detection @ 250 eV

- Noise < 15 e⁻
- Dynamic range > 10³ photons
- Automatic gain-switching

TCAD simulations: p-stop & guard rings

- Guard rings at chip boundaries to limit I_{leak}
- p-stop structures with metal overhangs to isolate each pixel
- Rounded edges at corners to reduce peak E-field

Detector R&D SLAC

TCAD simulations: detector capacitance

Performed device simulations to characterize detector capacitance with:

- New TCAD design kit from foundry
- New pixel layout (2nd prototype)

	Capacitance [fF]
total (center pix)	56
adjacent pixel (x 4)	0.16
corner pixel (x 4)	0.0038
internal p-well	45
p-guard ring	8.6
backside	2.2
Total (summed)	56.4552

To validate results of simulations:

- Calculated capacitance of 1st prototype, repeated analog simulations
 - \rightarrow noise simulations matches measurements

Pixel doping profile:

ePixM: pixel electronics

Detector R&D

- Charge Sensitive Amplifier (CSA) with auto-ranging capability
- Injection capacitance for calibration
- Correlated Double Sampling (CDS) → quasi-trapezoidal shaping
- Pre-charge feedback cap to extend DR and reduce noise when switching gain
- Sampling stage and 2x column buffers for analog and comparator (gain) output

Rota L. *et al.*, Design of ePixM, a fully-depleted monolithic CMOS active pixel sensor for soft X-ray experiments at LCLS II, 21st International Workshop on Radiation Imaging Detectors, July 7-12 2019, Kolympari, Chania, Crete, Greece

Matrix: architecture and floorplan

Since Banko Andrew Banko Andrew

- 4 banks of 48x384 pixels for parallel readout
 - Matrix column split in 4 sections
 - x2 50um pixels columns of each section multiplexed to one 100um backend channel
- 2 micro-bumps every 2 subcolumns
- Bias and digital section at the bottom
- Sensitive area ~ 20 mm x 10 mm

Post-layout simulations: noise

Detector R&D SL AC

Layout of one pixel

Equivalent Noise Charge (ENC) simulated at room temp, assuming $C_{Det} = 70$ fF:

- High-Gain = **11.3** e⁻
- Low-Gain = 90 e⁻

Post-layout simulations: automatic gain-ranging

Noise and non-linearity well below Poisson limit over whole range 250 eV - 500 keV

Gain [mV/fC]	Range [keV]	ENC [e ⁻]	Statistical limit [e ⁻]
187	0 - 50	11.3	69.4
17	50 -500	90.8	989.9

Technical approach and achievements

CMOS Monolithic front-end back-side window

- This year achievements
- Residual risk analysis

Soft X-Ray entrance window (demonstrated in 2018)

- Thin insensitive region near surface is critical to achieving required QE
- LFoundry wafers have been processed at SLAC to add entrance window
 - Thinned chips to 50 microns to facilitate full depletion and backside illumination
 - Implanted and annealed
- Update since last LDAC:
 - SLAC acquired low temperature micro-wave annealing machine
 - In process of installation/commissioning at SLAC
 - Allows fast turn-around in-house entrance window processing

Thin entrance window for soft X-rays

- Wafers post-processed by SLAC to form thin entrance windows on the backside
- MicroWave Annealing (MWA) process is robust, inexpensive and fast
- Sensors with thin entrance window bonded to ePix250s and ePix10k-Tender prototypes
- No degradation observed in Si sensor due to window process

Results published in:

Segal J. et al., Thin-Entrance Window Sensors for Soft Xrays at LCLS-II, NSS-MIC 2018

Si sensors with thin entrance window & ePix250s

- Sensor leakage contributed 6 electrons of noise when cooled to -20C
- No damage to sensor window observed

Backside of a SLAC-made sensor wafer for ePix detectors (courtesy of J. Segal, J.Hasi,

L. Rosario & C. Kenney)

Detector R&D

0.06 5.9 keV Photons (single pixel) Noise 5pectrum (a.u.) 2000 0.00 2 6

Energy (keV)

8

10

High quantum efficiency at carbon edge >84%

- 20 nm is 84% transmission at 279 eV
- Sensors usually need a thin aluminum film deposited to block visible light or debris shield to protect detector from sample material
- Both of the above can be the dominant attenuating component

Detector R&D

Synopsys simulations (J. Segal)

Technical approach and achievements

ePixHR based back-end ASIC

7.5 kHz frame-rate High-Rate backend ASIC for ePixM

- 20 mm
- 4 banks of 192 1-MHz, 14-bit ΣΔ Analog to Digital Converters (ADC)
 - Same ADC channel circuit/layout used for ePixHR (see ePixHR talk)
 - Already demonstrated in 2018
- 2 micro-bumps every ΣΔ ADC serving two column of 96 pixels (not multiple connections per pixel)
 - Simpler bump-bonding assembly than standard ePixs
- Other blocks: PLL, Control Unit, Registers, SPI interface, BGR, Bias, DACs, Pulser, etc.

ePixM interface between CMOS sensor and ROIC

Uses the same blocks proven in ePixHR

ePixM Backend

Detector R&D SLAC

Chip arrived last week.

4 orders of ADCs - 768

CMOS sensor:

- 2nd CMOS Prototype was designed, laid out and verified
 - Results from post-layout simulations meet design specs in terms of noise, dynamic range and functionality
- Submitted to L-Foundry for fabrication first week of March 2019
- 8 months delay to fabrication start at L-Foundry due to scheduled modernization of fabrication line at factory with subsequent recalibration and process validation of their production line
- Actual start of ePixM fabrication: October 2019
- Expected deliver from fabrication: End of January 2020

ROIC:

- 1st ROIC Prototype was designed, laid out, verified and fabricated ASIC received in November 2019
- Assembled to carrier board

Despite delays project is on track for the down selection date

ePixM prototype camera: Next steps

- Test ePixM back-end
 - modify/resubmit, if needed
- Test L-Foundry full-size CMOS sensor (February 2020)
 - modify/resubmit updated L-Foundry sensor, if needed
- Bump-bond to HR Backend
- Assemble in prototype camera (ePixHR)
- Camera characterization at LCLS
- Down-select end of CY2020

Detector R&D SLAC

Risk	Likelihood/Impact	Mitigation	Risk status
Unexpected complexity in the design	Low/Medium Schedule delay and increased cost.	Accept without mitigation	Retired
First Iteration full size CMOS sensor has bugs	Medium/Medium Would need to another fabrication effort which is planned in the budget.	Multiple variants Second iteration in the budget.	Active
First Iteration Back-end Design has bugs	Medium/Medium Would need to another fabrication effort which is planned in the budget.	Second iteration in the budget.	Active
Second Iterations have bugs	Low/High Schedule delay and increased cost.	Accept without mitigation	Active
Carrier board has defects	Low/Low Negligible delay and cost increase.	Accept without mitigation	Retired
Sensor post processing (Entrance Window)	Medium/Medium Schedule delay and increased cost.	Accept without mitigation	Retired
Parts reused from other projects (ePixHR)	Medium/Medium Schedule delay and increased cost.	Accept without mitigation	Retired

CMOS sensor design risks mitigation

- Early prototype: demonstrated that technology is suitable for X-ray applications
- 3 variants designed:
 - Conservative fixed gains version
 - 2 auto range variants
- Set of test structures for debugging

Detector R&D SLAC

Concept study started this year based on:

- Same sensor/ASIC assemblies as for prototype camera
- New shingled mechanical/thermal structure
- Prototype camera digital electronics board circuits laid out on new printed circuit board for shingled structure
- Same interface in terms of power/control/DAQ as for prototype camera (just more fibers)
 - Completely scalable

ePixM Detector system baseline concept

• Front end electronics:

- Tightly connected to ASIC geometry/shingle geometry
- Power to ASICs/sensor
- Control signal to ASICs
- Data access to ASIC
- Cooling system

• Camera DAQ:

- IO to FPGA
- Control logic
- Data storage (full frames)
- Data compression
- Data transmission

• Back end DAQ:

- User interface
- Data reception
- Data storage

Detector R&D

Aspects to be studied:

- Mechanics
- Thermal dissipation

All components of Camera are vacuum compatible

ePixM follows the same upgrade path of the ePix family

ePixM (ePixHR250M) is natively a variant of the ePixHR

- see strategy slides for general approach
 - UHR path for ePixM: ~ 50 kHz frame-rate
 - Dedicated SparkPix variants for soft-X-ray are under study

Bigger, Faster, Higher resolution and Higher Energies

Management Plan

- SLAC Detector R&D projects follow LCLS project management guidelines
 - CDR conducted before project starts
 - Financial plan approved by the PEC before start
 - Documented using Microsoft Project
 - Bi-weekly meetings to follow status are conducted together with the project sponsor (LCLS)
 - Milestones are tracked and if requires re-baselines or the project are implemented

Are the science requirements and detector performance parameters fully described and self-consistent?

- ePixM is designed to meet the requirements for REXS experiments at LCLS-II
 - Performance parameters aligned to meet requirements: Noise, Dynamic Range, Frame rate, QE, Consumption (green demonstrated).
- Is the development plan sound, with regard to mitigating technical risk and timely delivery? Are the presented results on track with the development plan? Are the management plans appropriate?
 - Development is on track (several risks retired. Mitigation in place)
 - Sensor:
 - Prototype (small) sensor tested
 - Full-size CMOS image sensor designed, in fabrication
 - High-Rate Backend ASIC:
 - Designed/fabricated, in testing
 - Digital Electronics boards/mechanical prototype camera mechanical/thermal parts:
 - Designed/fabricate/tested. Ready for sensor/ASIC assembly.
 - Project managed according to LCLS management protocol
- Is the choice of this type of detector consistent with the decade-level long-range development strategy, or is there a good reason why a different path has been chosen?
 - ePixM is natively part of the ePix family and follows the long term upgrade plan

Backup

Depletion depth vs V_{bias}

Substrate params: 3K ohm-cm substrate, 100um thick

Read-out current vs position

ePixm read-out current center hit exact corner hit current [a.u.] 2n 4n time

Note: in the case of corner hit, the total current will be 4x shown (shared by 4 pixels)

Shallow As distribution shown by SIMS and SRP

Detector R&D

SLAC

No degradation in sensor due to window process

