SLAC X-Ray Detector R&D Program

ePixHR250M (ePixM) a soft X-ray CMOS imager for LCLS-II

Concept Design Review – January 24th 2022 **D. Doering**, M. Oriunno, S. Boo, C. Kenney, and A. Dragone on behalf of the SLAC Detector Team

Review organization

- Proposed agenda
 - Introduction, speaker Angelo Dragone
 - Concept design, speaker Dionisio Doering
 - Initial request
 - Derived requirements
 - Electromechanical system concept overview
 - Camera interfaces overview
 - Mechanical system, speaker Marco Oriunno
 - Camera structure and assembly
 - Support structures
 - Cooling
 - Carrier cooling
 - Electronics board cooling
 - Cooling line air guards
 - Q&A

250KPix, >5Kfps ePix HR M detector

- ePixM project aims at developing a high-rate camera for soft X-rays scattering/imaging experiments at LCLS-II
- Key detector for:
 - Soft x-ray (SXR) resonant elastic X-ray scattering (REXS) experiments in LCLS NEH 2.2
 - X-ray Photon Correlation Spectroscopy (XPCS)
 - Other Coherent Scattering (CS) experiments

Detector Concept

192

X-Ray Detector R&D Program

Standard modular hybrid approach

ePixM Monolithic Active Pixel Sensor (MAPS)

- On-sensors amplifier reduces noise → demonstrated
- Fully-depleted and back-illuminated -> demonstrated
- Entrance window optimized for soft X-rays -> demonstrated

Standard micro-bumps

Readout ASIC and Sensor status

X-Ray Detector R&D Program

File controls Line Display 1 Line Display 2

ePix carrier board with ePixHR-

M back-end and sensor

Sensor performance demonstrated with small, wire-bonded pixel matrix:

- full depletion with thin entrance window @ SLAC
- noise = 15.7 e⁻, dynamic range = 10³ photons @ 530 eV

Readout ASIC performance demonstrated

• Stand alone tests shows ADC conversions and linearity

Evolution of ePixM camera designs

- Down-selection in May 2021: we presented the design of a 1 MPix shingled camera
- Following advice from the LDAC review panel, LCLS decided that a smaller camera would be a better solution towards a science-ready camera in 2023
- Concepts developed for ePixM shingled camera re-used in TXI camera

Parameter	Threshold	Objective	REXS	XPCS	CS	0.3 Mpix ePixM
Pixel pitch [um]	50	50	\checkmark	\checkmark	\checkmark	50
Read noise [e [.] rms]	15	10		\checkmark	\checkmark	12
Well depth [Number of 530eV photons]	1000	3000	\checkmark	\checkmark	\checkmark	>1000
Quantum efficiency [%, 275eV-1500eV]	70	90	\checkmark	\checkmark	\checkmark	~84
Frame-rate [kHz]	5	10	\checkmark	\checkmark	\checkmark	7.5
Array size [pixels]	512x512	1024x1024	\checkmark		\checkmark	768 * 384
Vacuum outgassing rate [torr*L/s]	2E-8	1E-8	\checkmark			2E-8
Cabling and cooling length [m]	2	4	\checkmark		\checkmark	2
Physical package envelope [WxLxD]	100x175x75 mm	75x150x50 mm	\checkmark			75x175x58 mm
Maximum power dissipation [W]	100*	50	\checkmark	\checkmark	\checkmark	75

* Assuming a 512x512

ASIC requirements

- ePixM single ASIC (7.05W):
 - 2.5V analog current 1.6A (4W)
 - 2.5V digital current 0.5A (1.25W)
 - 1.8V sensor (analog) current 1.0A (1.8W)

• ePixM 4 ASICs (28.2W)

- 2.5V analog current 6.4A
- 2.5V digital current 2.0A
- 1.8V sensor (analog) current 4.0A

Other ASICs power requirements

- Bias (Guard ring, ...)
- HV sensor bias (external supply)

IO requirements

ePixM 24 outputs/ASIC or 120 differential pairs (240 IOs) per carrier

192

- Readout clock 4 pairs (8 IOs)
- Single ended controls (>20 IOs)
- SACI (8 IOs)
- Temperature sensor and serial number (5)
- Power and ground pins (>50)
- Total ~330 IOs

Carrier board (top/bottom)

X-Ray Detector R&D Program

SLAC

- Dead area on the sides
- Drawing shown width ~50mm, but may need to go wider for routing signals to 2 upper ASICs

Camera boards stack-up

- Digital board (FPGA) moved to the top
- Carrier board connected directly to the digital board (high number of IOs)
- ASIC power supply (DCDCs+LDOs) on the digital board
- Power and communication board
 - Optical transceiver (QSFP, Leap-on, Samtec)
- Additional components to allocate to lower or upper board:
 - Power input connector
 - Monitoring ADCs
 - DACs

X-Ray Detector R&D Program

SLAC

Temperature reading

- Carrier Thermistors
 - 1 to analog ADC to monitor temperature via FPGA
 - 1 routed to the external connector
- Digital board Thermistor
 - 1 to analog ADC to monitor temperature via FPGA
- P&CB Thermistor
 - Just routes carrier thermistor out to the external controller

Serial number

- All serial numbers report to the FPGA
- Together with FW number they compose the camera ID

FEATURES

Products

 Unique, Factory-Lasered and Tested 64-Bit Registration Number (8-Bit Family Code

Plus 48-Bit Serial Number Plus 8-Bit CRC

Tester); Guaranteed No Two Parts Alike Standby Current <1µA

Multiple DS2411s to Reside on a Common

Built-In Multidrop Controller Enables

Multidrop Compatible with Other 1-Wire

8-Bit Family Code Identifies Device as

DS2411 to the 1-Wire Master Low-Cost TSOC, SOT23-3, and Flip-Chip

1-Wire® Network

- NAME_FwSN_SN_SN_CarrierSN
- Carrier board
 - 1 serial number IC 64 bits
- Digital board
 - 1 serial number IC 64 bits
- P&CB board
 - 1 serial number IC 64 bits

Humidity Sensor

- One humidity sensor per system
 - HIH_5031_001 will be constantly monitored using an independent stream that contains

Low Voltage Humidity Sensors

SLAC Humidity sensor

X-Ray Detector

Electro-mechanical system

- Overall dimensions
 - 75x175mmx58 (100x175x75mm)
- Side entrance window
 - With removable shield
- Cooling lines
 - One inlet and one outlet
 - Flexible roses to enable better integration with vacuum chamber

Electro-mechanical system

X-Ray Detector

R&D Program

SLAC

Board to board connector interfaces

R&D Program

X-Ray Detector

Interfaces

X-Ray Detector R&D Program

SLAC

Preliminary Integration study with the RIXS

Flexible cooling lines

Integration with experimental chamber

Grounding diagram

- Analog supply should be isolated from digital supply
- Bias return is common with matrix return (cleaner)
- Digital and analog ground are connected at the analog board via zero ohm resistor

X-Ray Detector

R&D Program

SLAC

Camera data flow

*On this camera it will be limited to 4x16.3Gbps due to FPGA transceivers restrictions

SLAC

Interface – Fiber opticst communication

X-Ray Detector R&D Program

- Fiber optics testing
 - 12 x 25Gbps
 - Data, timing and control
 - PRBS
 - PGP2b at 3 Gb/s (ok)
 - PGPv4 at 6 Gb/s (ok)
 - PGPv4 at 10 Gb/s (ok)
 - PGPv4 at 12 Gb/s (ok)
 - PGPv4 at 15 Gb/s (ok)
 - PGPv4 at 25 Gb/s, max rate (ok)

ed speeds already meet experiment requirements

100G CFP SR10 to SR10 US Conec MTP® / Corning Fiber / OFNP

Customized MTP® 24 Fibers OM4 Multimode Conversion Harness Cable

RETA-RIB-CF40-24-050a-2-S70-11b

FO backplane connector

Transceive

https://www.lasercomponents.com/fileadmin/user_upload/ home/Datasheets/sedi/fibre-optic-ribbon-hermeticfeedthroughs.pdf; https://www.sedi-ati.com/

Management plan

- SLAC Detector R&D projects follow LCLS project management guidelines
 - CDR conducted before project starts
 - Financial plan approved by the PEC before start
 - Documented using Microsoft Project
 - Bi-weekly meetings to follow status are conducted together with the project sponsor (LCLS)
 - Milestones are tracked and if requires re-baselines or the project are implemented

Construction Plan: Milestones and Deliverables

- Schedule is aggressive and represents the best we can do to meet the experiment schedule.
- At the same time this is feasible within assumptions added to the risk table
- **Deliverables:** x2 ePixHR250M 0.3 MPix cameras (1 for REXS and 1 for XPCS)

Key Milestones	Planned Date	Goal
Electro-mechanical design started	06/16/2021	Detector concept development including hutch integration
Preliminary Design Review	01/24/2022	Concept review
Detailed Electro-mechanical design completed	03/15/2022	Complete Detector design
Final Design Review	04/15/2022	Manufacturability review
Component's fabrication starts	04/18/2022	Parts fabrication and procurement
Firmware Design completed	08/08/2022	Fully operational boards
Component's fabrication completed with qualification	07/01/2022	Parts fabricated and qualified
Modules and Detector Assembled	01/30/2023	Assembled deliverables
Detector Characterization and Integration	02/24/2023	Parameter optimization and hutch integration
Detector Delivery Starts	03/06/2023	Transfer to operations
Project closeout	04/10/2023	

X-Ray Detector

- Sensor: meet requirements, 2nd fab run to build stock and small improvements
- Back-end ASIC: new version is being tested, updates soon...
- Assembled module prototypes:
 - Identified faulty electrical connections on bumps
 - Issue investigated
 - Next steps: dense mechanical bump array plus solder bumps on existing sensors by IZM
- Camera design: priority shifted from 1 Mpix shingled design to 0.3 Mpix camera
- Design on-track for camera delivery

ASICs and Sensors, 28 W (7 W/each)

Digital board, 36 W 10 W LV regulator 26 FPGA

Power and Communication Board, 10 W

6 W Transceiver 4 W other comp.

X-Ray Detector

Coolant choice (for details, see Marcos' talk)

X-Ray Detector R&D Program

T Coolant required < - 30°C 3M HFE-7000 refrigerant low viscosity, low pressure drop

New production run

- New tape-out with LFoundry 150 nm in August 2021 to have additional sensors for production
- Delivery: March 2022
- Floorplan:
 - Sensor v2 (current design)
 - Sensor v2 with Very High Gain
 - Sensor v2 with extra pads
 - Small matrixes
 - Test structures

SLAC

Gain & switching point optimization

- Current design: switching point HG \rightarrow LG @ 50 keV
- Conservative: novel "correlated pre-charging" technique to reduce noise in LG, never tested
- Works as expected: noise in LG is well below the Poisson statistical limit
- One flavor of large/small sensors in new tape-out with Very High Gain mod (smaller C_{fb}):
 - move switching point to lower energy (~25 keV)
 - reduce impact of downstream readout stages (SF, ADC) on noise in HG region

Operating temperature

- Installed environmental chamber to study performance vs temperature
- Noise slightly higher change with lower temperature
 - \rightarrow more tests needed, possibly due to different bias
- Sensor does not require -20°C → cooling specs can be relaxed
- Final operating temperature to be determined with assembled module tests

QE Measurement for Entrance Window to confirm simulation results

- System tested at ALS beamline 6.3.2 (Eric Gullikson)
- Test diodes from ePixM sensor wafers, thinned to 115 um with shallow BF2 entrance window (microwave annealed)
- Same wafer as the Fe-55 spectrum was acquired with

Preliminary QE Measurement Results

Test Diode on ePixM process 100 0.30 0.25-6 Response (A/W) **Quantum Efficiency** 0.20 QE @ 277 eV ~84% bias = 0 80 0.15bias = 12bias = 300.75 0.10bias = 50 20 bias = 80ALS beamline 6.3.2 0.05bias = 120Eric Gullikson 0.65 0.00-09 90 100110 80 100 300 700 200 400 600 800 Photon energy (eV) Photon Energy (eV)

BF2 entrance window post-processed on foundry CIS sensor, 115μ m thick.

As entrance window on SLAC planar sensor wafer, 300µm thick

X-Ray Detector R&D Program

SLAC

- Received 2nd version of back-end ASIC with better supply distribution and
- Engineer previously working on FPGA/testing/camera left SLAC → delays...
- Improvements:
 - Skew on data output lines reduced by $80\% \rightarrow$ was causing sync issues at 5 kfps
 - Fixed: non-deterministic ping-pong on even/odd pixels, needed 2 dark images

ePix carrier board with ePixHR-M back-end Add latest results...

X-Ray Detector

R&D Program

SLAC

Add latest results...

ePixM Bump Bonding is Challenging and Essential

- Missing power/control bumps are fatal
- Must be back side illuminated
 - Requires thinning wafer to ~115 microns for full depletion
 - Shallow diffusion plus ultra-thin dielectric/metal films
 - Thin window is fragile
- Power/control bumps are near one edge of the chip
 - Where alignment and chip curvature are most sensitive
- Sparse arrangement of bumps across chip
 - Few bumps per cm2 means lower adhesive forces
 - Nonuniform distribution of bumps creates nonuniform bonding pressures

X-Ray Detector

Many Unsuccessful Attempts at Bump Bonding

2020

- Thin 200mm wafer
- Core out 150mm wafer center
 - Stanford can only handle 150mm
 - Outer 2-3cm of wafer coated with glass
- SLAC performed lithography for bump patterning and bump deposition
- SRI (local company) performed lithography on subset of wafers
- Trouble with thin, large wafers breaking
- SLAC flip-chip bonded multiple sets with process variations

X-Rav Detector

More Unsuccessful Attempts at Bump Bonding

2021

- Contracted Micross to bond SLAC-bumped chip pairs (3 recipe attempts)
- Contracted Advacam to bond SLAC-bumped chip pairs (7 recipe attempts)
- Used underfill
- SLAC worked with flip-chip vendor to make a special chuck
- SLAC bump and bonded 700um thick, 150mm wafers
- Performed autopsies on failed modules

Difficult to interpret, but most of the bumps appear to have been aligned and bonded to their counterparts. White indicates a reflective, flat, smooth surface

X-Ray Detector

X-Ray Detector

R&D Program

Despite these Efforts, No Working Bonded Modules

- When testing sensor+back-end bump-bonded:
 - Most modules show no current consumption on sensor supply
 - Few modules consuming 20% of nominal power and one drawing nominal power, but were not functional
- Cause: missing electrical connection between biasing circuits on back-end ASIC and sensor
- Supply, references for bias circuits and control signals are distributed through bumps from the back-end to the MAPS

ePix carrier board with ePixM MAPS bonded on ePixHR-M back-end

- Circuitry on large-scale MAPS is almost identical to smaller matrix
 → unlikely that there are bugs in the circuitry
- Test large MAPS independently to verify biasing / power consumption
- Connected VDD/VSS/Ibias through microprobes on probestation
- Measurements match simulations → sensor biasing looks functional

X-Ray Detector

Is Unusual Sparse Bond Array a Problem?

- Distribution of bumps on sensor and back-end ASIC is not uniform
- Large area, but relatively few bumps \rightarrow low mechanical strength

Sketch of die floorplan with bump locations

X-Ray Detector

Add Mechanical Bumps

- New mask for bump deposition with mechanical bumps
- Mechanical bumps are deposited on passivation, no electrical connection
- Better uniformity → higher mechanical strength and reliability
- More bumps around the corners → enclose critical ones
- SLAC processing thick sensors with mechanical bumps and sputter pre-etch in-house for quick turn

Power/Control Bumps

Preparation for Bump Bonding of Science Modules

- Prior to shipping to flip-chip vendor, SLAC must:
 - Half of batch left 200mm and half cored to 600mm
 - Thin 600mm and 200mm wafers down to about 130 microns
 - Polish back surface
 - Implant (current step)
 - Metal deposition
 - FGA anneal?
 - Microwave anneal
- All without breaking these thin wafers
- This program is occurring now to vet process using blank wafers

X-Ray Detector

Commercial Flip-Chip Bonding by IZM

- 700 micron thick sensor wafer no entrance window lowest risk
- Mechanical bumps included
- Launched over summer expect back by end of CY2021

Batch IZM-1

- First science modules
- SLAC will thin, polish, implant, metalize, anneal sensor wafers
- Send to IZM by end of CY2021 and receive Q1/Q2 CY2022

Batch IZM-2

- Start at least partway through IZM-1 processing to incorporate lessons learned and to reduce risk of single batch failure
- Receive summer CY2022

X-Rav Detector

- Intense and broad effort to bump bond ePixM
 - Involved multiple attempts and outside vendors
 - Unsuccessful so far
- Aggressive plan to bond science modules

- Fairly confident that large sensor design works as expected
 - Large sensor matrix is nearly identical to small sensors which are fully functional
 - Large sensor power consumption verified with probe test

X-Rav Detector

Sensor with additional VDD/GND bumps

- August 2021 run: one version with additional bumps
- Re-Distribution Layer t.b.d. on back-end ASIC for electrical connection

Risk	Likelihood/Impact	Mitigation	Risk status
Unexpected complexity in the design of the camera	Low/Medium Schedule delay and increased cost.	Accept without mitigation	Retired In R&D
Full size ASIC/sensor module at 5kHz has undiscovered issue	Low/Low 5kHz has been demonstrated performance analysis ongoing	Accept without mitigation	Active
Flip-Chip Bonding	High/Medium Schedule delay and increased cost.	Use three vendors Multiple batches	Active
Module yield insufficient	Low/Low Schedule delay and increased cost	Module production is more than twice the minimum needed	Active
FPGA procurement	High/High Schedule delay and increased cost	We are trying to build a stock of FPGAs	Active
Cooling of modules and related mechanical design aspects	Medium/Medium Schedule delay and increased cost.	Include PDR review 5 months into design / prototype critical components	Active
Assembly related mechanical design aspects	Low/Low Schedule delay and increased cost.	Include PDR review 5 months into design / prototype critical components	Active
Fabricated parts have defects	Low/Low Schedule delay and increased cost.	Accept without mitigation	Active
Metrology and geometry correction aspects	Low/Medium Schedule delay and increased cost.	Analysis to be completed before the FDR	Active

1. A full system-level thermal analysis is recommended. The SLAC team may consider to build a mock-up of the detector to evaluate the mechanical design before detector modules are assembled.

→ New camera baseline started with more conventional cooling system

2. We have not seen wafer-scale QE uniformity data for microwave annealed entrance window. *Measurements on uniformity are recommended.*

→ Have performed initial QE measurements on a few chips. Difficult to measure many chips due to assembly, beam time access, etc. and to do so with better than 5% uncertainty. Can't be done at wafer scale. Eventually a flat field with soft x-rays is required and will be performed.

3. LCLS should evaluate the scientific impact from the ePixM's power dissipation and package size potentially being out of specification.

→ New camera design addresses this concern

X-Ray Detector