2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference

4 - 11 November, 2023, Vancouver, Canada

<u>Dionisio Doering</u>, Lorenzo Rota, Aldo P. Perez, Bojan Markovic, Aseem Gupta, Dawood Alnajjar, Larry Ruckman, Donald Geranen, Marco Oriunno, Conny Hasson, Julie Segal, Christopher Kenney and Angelo Dragone

SLAC X-ray Detector R&D Program

2023 IEEE

Outline

- Project goals
- Project requirements
- Detector concept
- Status of the demonstrator:
 - Pixel performance and new fabrication run
 - Back-end ASIC performance
 - Assembled modules

ePixHRM320k

- ePixM project aims at developing a high-rate camera for soft X-rays scattering/imaging experiments at LCLS-II
- Key detector for NEH 2.2 beamline:
 - QRIXS Instrument
 - Soft x-ray (SXR) resonant elastic X-ray scattering (REXS) experiments
 - X-ray Photon Correlation Spectroscopy (XPCS)
 - ChemRIXS Instrument
 - Other Coherent Scattering (CS) experiments

Parameter	Threshold	Goal	REXS	XPCS	CS	0.3 Mpix ePixM
Pixel pitch [um]	50	50	\checkmark	\checkmark	\checkmark	50
Read noise [e ⁻ rms]	15	10		\checkmark	\checkmark	12
Well depth [Number of 530eV photons]	1000	3000	\checkmark	\checkmark	\checkmark	>1000
Quantum efficiency [%, 275eV-1500eV]	70	90	\checkmark	\checkmark	\checkmark	~84
Frame-rate [kHz]	5	10	\checkmark	\checkmark	\checkmark	7.5
Array size [pixels]	512x512	1024x1024	\checkmark		\checkmark	768 * 384
Vacuum outgassing rate [torr*L/s]	2E-8	1E-8	\checkmark			2E-8
Cabling and cooling length [m]	2	4	\checkmark		\checkmark	2
Physical package envelope [WxLxD]	100x175x75 mm	75x150x50 mm	\checkmark			75x175x58 mm
Maximum power dissipation [W]	100*	50	\checkmark	\checkmark	\checkmark	75

* Assuming a 512x512

Detector Concept

Standard modular hybrid approach

X-rays $E_v = 250 \text{ eV} - 2 \text{keV}$

ePixM Monolithic Active Pixel Sensor (MAPS)

- On-sensors amplifier reduces noise
- Fully-depleted and back-illuminated
- Entrance window optimized for soft X-rays

Standard micro-bumps

384

192

ePixHR-M Readout ASIC (ROIC)

• 4 arrays of 192 ADCs

ePixM: pixel electronics

- Charge Sensitive Amplifier (CSA) with auto-ranging capability
- Injection capacitance for calibration
- Correlated Double Sampling (CDS) \rightarrow quasi-trapezoidal shaping
- Sampling stage and 2x column buffers for analog and comparator (gain) output

ePixM interface between CMOS sensor and ROIC

- Pixel pitch: 50 μm
- Subgroup of 48 x 2 pixels

Parameter	Threshold	Goal	REXS	XPCS	CS	0.3 Mpix ePixM
Pixel pitch [um]	50	50	\checkmark	\checkmark	\checkmark	50
Read noise [e ⁻ rms]	15	10		\checkmark	\checkmark	12
Well depth [Number of 530eV photons]	1000	3000	\checkmark	\checkmark	\checkmark	>1000
Quantum efficiency [%, 275eV-1500eV]	70	90	\checkmark	\checkmark	\checkmark	~84
Frame-rate [kHz]	5	10	\checkmark	\checkmark	\checkmark	7.5
Array size [pixels]	512x512	1024x1024	\checkmark		\checkmark	768 * 384
Vacuum outgassing rate [torr*L/s]	2E-8	1E-8	\checkmark			2E-8
Cabling and cooling length [m]	2	4	\checkmark		\checkmark	2
Physical package envelope [WxLxD]	100x175x75 mm	75x150x50 mm	\checkmark			75x175x58 mm
Maximum power dissipation [W]	100*	50	\checkmark	\checkmark	\checkmark	75

* Assuming a 512x512

System structure

- Carrier board
 - Focal plane with 4 ASICS
- Digital board
 - FPGA and voltage regulators for the ASICS
- Power and communication board
 - Input power at 24V gets reduces and distributed at 6V
 - LeapOn Transceiver implements 12 lanes of fiber optics communication

Digital Board

Carrier board

Power and communication

Camera data flow

- ePixM 7.5 kfps data rate
 - 384*192 pixels *16 bits * 4 ASICs
 - *7500 frames per second
 - *66/64 **encoding** => **36.5-Gbps**

DFX

- Enables dynamic optimization of the data pre-processing
- Image acquisition and control static
- Can be tailored for custom user application or edgeML needs

ASIC

ASIC

ASIC

ASIC

36.5Gbps

Mechanical concept

- Overall dimensions: 75x175mmx58
- Side entrance window with Shield
- Cooling lines, one inlet and one outlet •
- Vacuum requirements implemented with no water to vacuum joints

model

Test results with full system

- System level functionality
 - ADC test using external DAC, Supply for four ASIC, Timing to the detector
- ASIC level functionalities
 - Noise, X-Ray with Cd^{109,} Spatial data descrambling, Pixel gain

Note on sensor:

Batch IZM-0

- 700 micron thick sensor wafer no entrance window lowest risk
- Results presented today

Batch IZM-1

- First science modules
- SLAC will thin, polish, implant, metalize, anneal sensor wafers
- Sent to IZM by Q2 CY2023 and receive Q4 CY2023

Prototype Detector

LASER pointer projected image

Testing with Cd109 source

- Thick sensor wafer (700um thickness, back-side not processed, not implanted/annealed)
- Sensor operating conditions: bias voltage =71V, leakage current 350 nA / ASIC (not processed!)
- 700um thick sensor noise performance, not fully depleted and not annealed: 28 e⁻
- Final sensor expected to have performance in line with the small prototypes
- Preliminary data processing:
 - Pedestal subtraction
 - Common-mode noise correction (8% improvement at low-occupancy)

Pixel – different gain modes

- Due to area/noise constraints, the pixels do not contain registers which configure the functionality of the pixels.
- Pixel can be configured to run in different gain modes by adjusting comparator threshold

Summary & Next steps

ePixM sensor, ePixHRM readout ASIC and detector

- The updates on the development of the sensor and ASIC module has been presented
- The integration of the detector into two experimental chambers has been presented
- Initial performance measurements with thick sensor has been demonstrated
- Next steps
 - DAQ integration
 - Assembly of thin sensor into a detector
 - Tests with LCLS super conducting linear accelerator beam