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We propose a new test statistic based on a score process for determining the statistical significance of a
putative signal that may be a small perturbation to a noisy experimental background. We derive the
reference distribution for this score test statistic; it has an elegant geometrical interpretation as well as
broad applicability. We illustrate the technique in the context of a model problem from high-energy
particle physics. Monte Carlo experimental results confirm that the score test results in a significantly

improved rate of signal detection.
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One of the fundamental problems in the analysis of
experimental data is determining the statistical significance
of a putative signal. Such a problem can be cast in terms of
classical “hypothesis testing,” where a null hypothesis
H ) describes the background and an alternative hypothe-
sis H | characterizes the signal together with the back-
ground. A test statistic (a function of the data) is used to
decide whether to reject H , and conclude that a signal is
present.

The hypothesis test concludes that a signal is present
whenever the test statistic falls in a critical region W. One
is interested in the probability that a signal is found under
two scenarios. First, when the null hypothesis F , is true,
the significance level a is the probability of incorrectly
concluding that a signal is present. Second, when the
alternative JH , is true, the power of the test is the proba-
bility that the signal is found. The goal is to construct a test
statistic whose asymptotic distribution (reference distribu-
tion under JH, for large sample size 1) can be calibrated
accurately and that the associated test has high power at a
fixed «, such as « = 0.01.

When the two hypotheses are distinct, a powerful tech-
nique based on the likelihood ratio test (LRT) is often used.
Suppose p(x;0) is a probability density function for a
measurement x with a parameter vector @ € @ C R¢.
The joint probability density function evaluated with n
measurements X for an unknown 0 is the likelihood
function [1] L(0|X). An effective approach to the problem
of choosing between JH, [corresponding likelihood
L(0,]X)] and H | [with a likelihood L(0,|X)] for explain-
ing the data is to consider the LRT statistic

A = LOIX)
L(0,|X)
where @ is the value of @ that maximizes L(0|X) [1-3]. To

employ the LRT, the parsimonious model under H , (with
so parameters) must be nested within the more complicated
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alternative model under JH, (with s, parameters). For
simple models, under regularity conditions, 2log(A) has
an asymptotic (i.e., n — 00) y? distribution with (s; — s,)
degrees of freedom under F  [1].

When the alternative hypothesis corresponds to a sig-
nal which is a perturbation of the background, regularity
conditions required for this large-sample asymptotic the-
ory are violated, since (a) some of the parameters under
JH , are on the boundaries of their region of support and
(b) different parameter values give rise to the same null
model. As a result, the LRT has lacked an analytically
tractable reference distribution required to calibrate a test
statistic. Such a difficulty occurs in many practical appli-
cations, for example, when testing for a new particle
resonance of an unknown production cross section, since
the signal strength must be nonnegative. Hence, the LRT
must be employed cautiously; however, it has been em-
ployed in several problems of practical importance where
certain required regularity conditions are violated [2].
Misapplication of the LRT statistics can lead to incorrect
scientific conclusions [4,5].

Because of above difficulties with the LRT, a y?
goodness-of-fit test is commonly employed. However, it
typically has less power than might be hoped for as it does
not take into account information about the anticipated
form of the signal. We propose a new test statistic (closely
related to the LRT for sufficiently large n) based on a score
process to detect the presence of a signal and present its
reference distribution.

Consider the model

plx;m, 0) = (1 — n)f(x) + ni(x;0),

where f(x) is a specified null density and (x, 0) is a
perturbation density. The parameter vector 0 is the
“location” of the perturbation, and 7 € [0, 1] mea-
sures the “strength’ of the perturbation. The null hypo-
thesis of no signal (JHy: 7 =0) implies 7 is on the
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boundary; scenario (a) applies. Under H (, p(x;0,0) =
f(x) for all x independently of @; scenario (b) is also
applicable.

Consider a search for a new particle resonance. One may
measure the frequency of events as a function of energy e,
modeling it by p(e; n, Ey), where f(e) characterizes the
background density and

r 1

N E) = fe — Br + (/27

is the Cauchy (Breit-Wigner) density describing a reso-
nance centered on E, with full width at half maximum I'.
We consider the two-dimensional 8 = (E,, I') and for a
fixed I', a one-dimensional 0 = E,.

A key obstacle to detecting the signal is finding the tail
probability for test statistics, enabling valid statistical in-
ference. We provide an asymptotic solution to this problem
via a geometric formula [see Eq. (3)]. The relative im-
provement of the score test over the y? goodness-of-fit test
is particularly salient when the signal is hard to detect
(Fig. 4). The development of the reference distribution
and a flexible computational method will enable making
probabilistic statements to solving some of the fundamen-
tal problems arising in many experimental physics.

Pilla and Loader [6] have developed a general theory and
a computationally flexible method to determine the asymp-
totic reference distribution of a test statistic under
JH . Their method is based on the ““score process,” in-
dexed by the parameter vector @ and defined as

$(0) = - tog] [ i 7.0)|
i=1

7n=0

for a given data E = (Ey, ..., E,). Under H ,, the expec-
tation of S(0) is O for all @, while under F | it has a peak at
the true value of 0. Hence, the statistic S(0) is sensitive to
the signal of interest. The random variability of S(0) can
exhibit significant dependence on the parameter vector 0;
hence, we consider the normalized score process defined as

S(0)
/nC(0,0)

where n is the total number of events observed, and

o i(x; 0)y(x; OT)
—w f(x)

is the covariance function of S(0) for @ € 6.

For exposition, we assume that f(e) is completely speci-
fied. In practice, it often contains unknown parameters. In
this scenario, the covariance function C(6, 01) in Eq. (2)
for S(0) needs modification. Pilla and Loader [6] derive an
appropriate C(0, 8) under estimated parameters.

For testing the hypotheses H ;: 7 = 0 (no signal) ver-
sus HH ;: n > 0 (signal is present) consider the test statistic

S*(0) := for@ € ® C RY, (1)

Cc(0,0") = dx — 1 ()

T = sup S*(0).
00

We conclude that a signal is present if T exceeds a criti-
cal value ¢ € R corresponding to a specified significance
level «. In order to determine ¢, we need to find an
approximation to the null distribution of T.

Under JH,, S*(@) converges in distribution to a
Gaussian process Z(0) with mean 0 and covariance func-
tion

(0,07
JC(0,0)C(6T, 0T)

as n— oo [6]. The null distribution of T converges to
that of supg Z(@) as n — oo. Except in special cases,
this distribution cannot be expressed analytically.
However, a good asymptotic solution to the tail probability
P(supg Z(0) = ¢), where ¢ € R is large, can be obtained
via the volume-of-tube formula [7-9]. This formula
provides an elegant geometric approach for solving prob-
lems in simultaneous inference [10] by reducing the evalu-
ation of tail probabilities to that of finding the
(J — 1)-dimensional volume of the set of points lying
within a distance r of the curve (d = 1) or manifold
(d = 2), with boundaries, on the surface of the unit sphere
SU=D embedded in R’ for some integer J (see Fig. 1).

We assume that the covariance function C(0, 1) is twice
differentiable. The results of Pilla and Loader [6] provide
an expansion of the distribution of supg Z(0) in terms of the
X’ probabilities:

d
i
P(supZ@®) =c)=> —F—P(x%., , = ?)
0c0 /;)AkAdJrlfk ik
+o(cle /) asc — oo, 3)

where Ay = 1 and A; = 27%/2/T'(k/2) for k = 1.

The constants ¢, ..., {; depend on the geometry of a
manifold as described next. The Gaussian random field
Z(0) is represented via the Karhunen-Loéve expansion
[11] as

One-dimensional
manifold & (©)

S
WJ=3) Boundary cap

Tube of
manifold with
radius r

Radius r of the
tube

FIG. 1 (color). Tube around a one-dimensional manifold &(0),
with boundaries, embedded in S? C R?3.
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20) = Y v,£.(0) = (v, £0)),
=1

where (-, -) denotes the inner product, v and £(0) are
vectors, and v, ~ N(0, 1). The vector function £(0) defines
a curve (or surface, depending on the dimensionality of 0)
on SY~D. The coefficient ¢, is the length (d = 1), area
(d = 2), or, in general, volume of the manifold £(0) which
is found via

l — ﬁ _[coo1 e 00 @

where D(0, 0) is defined as

c(, 0 wmﬂw

1/2
w@ﬂwnw%mw)

0f=0

with V; and V, as the partial derivative operators with
respect to @ and @1, respectively. The constant /; measures
the size of the boundaries of the manifold, and for d = 1
just counts the end points. The remaining constants involve
curvature of the manifold and its boundaries, and become
progressively more complex. In practice, the first few terms
will suffice and an implementation of the first four terms is
described in Ref. [12]. When the null distribution can be
approximated by a y? distribution, a tabulated value can be
employed to calibrate the test statistic. However, the geo-
metric constants appearing in Eq. (3) depend on the prob-
lem at hand.

In order to derive Eq. (3), we employ results of
Hotelling-Weyl-Naiman [7-9]. If the Karhunen-Loeve ex-
pansion is terminated after J terms, it follows that [6]

PupZ(8) = ) = [ Plsup(U. &O)) = w) ().
(ISC] c (IS¢

where

U=|U = .o, Up=
(’ vl ! ||v||>

is uniformly distributed on SV=V, & = (&,,..., &), w =
c¢//y, and h,(y) is a x* density with J degrees of freedom.
The probability in the integrand measures the chance that
the random point U is sufficiently close to the curve £(0).
For small radii, this is determined by the volume-of-tube
formula [7,8], extended by Ref. [9] to manifolds with
boundaries. Performing the integration yields Eq. (3).

In order to apply Eq. (3), one has to evaluate (. First,
one must find the covariance function in Eq. (2) by nu-
merical integration. The constant {; is then found using a
numerical integration to evaluate Eq. (4).

In many applications, including the one considered in
this Letter, one is interested in the probabilities of rare
events (i.e., ¢ — ). Therefore, the terms in Eq. (3) are of
descending size, and the error term is asymptotically
negligible.
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Surface of the process S*(0) as a function of

We demonstrate the power of the score test with a
Monte Carlo simulation experiment drawn from high-
energy physics. In our simulations, we consider measure-
ments of energy in a region e € [0, 2] in which the back-
ground (null) density is modeled as linear, with a specific
form f(e) = (1/2.6)(1 + 0.3¢). The resonance is modeled
by a Breit-Wigner density function. The parameters for this
problem are modeled following an example in Roe [13].

To examine the effectiveness of T in detecting a signal,
we perform Monte Carlo analyses of 10 000 samples each
with a size of n = 1000 events spread over 50 bins at the
values of I' = 0.2 and E, = 1. For a single simulated data
set, Fig. 2 shows the normalized score surface as a function
of 0 = (E), I'); the maximum is achieved near E; = 1
irrespective of the value of I

Since the method is robust with respect to I', one can
obtain significant computational gains by fixing I" and
optimizing over @ = E, alone. Figure 3 shows histograms
over 10000 samples under H : 3 = 0and H ;: n = 0.1.
We fixed I" = 0.2, and optimized S*(0) with respectto @ =
Ey. The former histogram confirms that, about 5% of the
time, the hypothesis of no signal is rejected. For this case,
{o = 8.877 and ¢, = 2.0. The asymptotic null density

@
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FIG. 3 (color). Histograms of the simulated null ( = 0) den-
sity (red) and alternative (1 = 0.1) density (yellow) of the test
statistic T with a superimposed (blue) asymptotic null density
[derivative of Eq. (3)] for a fixed I" = 0.2. The purple vertical bar
is the cut off for the test statistic T at the 5% false positive rate
calculated via the volume-of-tube formula [Eq. (3) with d = 1].
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FIG. 4 (color). Power comparison of the x?> goodness-of-fit
test (blue) and normalized score test T (red) for d =2 at @ =
0.05 (dashed lines) and @ = 0.01 (solid lines), calculated via the
volume-of-tube formula, based on 10 000 simulations for binned
data.

[derivative of Eq. (3) with d = 1] agrees with the simulated
null distribution as expected.

Figure 4 displays power curves for @ = (E,, I'). In this
case, {y = 13.51, {; = 35.3, and {, = —7.23. The results
demonstrate an increase in power as the signal strength 7
increases; T is significantly more powerful than the x>
goodness-of-fit test in detecting the signal. The geometric
asymptotic tail probability result [Eq. (3)] is elegant, sim-
ple and powerful in distinguishing the signal and the
random fluctuations in data.
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