

Alternate Data Formats?

Real Py

HPS Software Meeting

July 15, 2020

Simple Column Based Formats

- Instead of writing data as serialized class structures, write the data as arrays of primitives.
 - Each event contains named:
 - primitives run number, event number, ...
 - lists particle_energy, particle_type, ecal_cluster_energy, ...
 - lists of lists particle_indexes_to_tracks, track_covmatrix, ...
 - Minimally needed:
 - int, double, vector<int>, vector<double>, vector<vector<int>>, vector<vector<double>>
- Examples of simple column based data formats:
 - PAW's n-tuples, Sho's "tuple"
 - Python: Pandas Data Frames.
 - ROOT: RDataFrame
 - * Works with any format TTree, but is *A LOT* easier with a simple column based format.
 - CLAS12: HIPO

Pro/Con of simple formats

* PRO:

- It becomes very easy to add or drop some of the data. Just add or drop the column.
 - Existing code does not break, unless you drop a column it needed.
- Most implementations of column based data sets are very fast.
 - Only read the actual data you need, not the whole class.
- Very easy to access the information.

* CON:

- Data is less organized, depending entirely on intelligent naming of the columns.
- References are index based, so care must be taken that the referenced data does not change order.

ROOT - RDataFrames

data x, y filter x > 0 define r2 = x² + y² histo r2

- Transaction based data analysis.
- Advertised as: "modern, high-level, type-safe, parallel"
 - Scales well to multi-core processing.
- Works with C++ and / or Python.
 - Admittedly, the Python will likely be a mixed Python and C++.
- Works well with simple data formats.
 - Can work with complicated class structured TTree, but is more difficult.
 - Does not seem to work at all with TRef or TRefArray. (?)
- This seems to be where the ROOT analysis platform is going.
- see: <u>https://root.cern/doc/master/classROOT_1_1RDataFrame.html</u>