

Alternate Data Formats?
Real P_{y}
HPS Software Meeting

July 15, 2020

Simple Column Based Formats

\because Instead of writing data as serialized class structures, write the data as arrays of primitives.
\% Each event contains named:
\% primitives - run number, event number, ...
\% lists - particle_energy, particle_type, ecal_cluster_energy, ...
$\%$ lists of lists - particle_indexes_to_tracks, track_covmatrix, ...
$\%$ Minimally needed:
\% int, double, vector<int>, vector<double>, vector<vector<int>>, vector<vector<double>>
\because Examples of simple column based data formats:
\because PAW's n-tuples, Sho's "tuple"
\% Python: Pandas Data Frames.
\therefore ROOT: RDataFrame

* Works with any format TTree, but is A LOT easier with a simple column based format.
\% CLAS12: HIPO

Pro/Con of simple formats

\% PRO:
\because It becomes very easy to add or drop some of the data. Just add or drop the column.
: Existing code does not break, unless you drop a column it needed.
\% Most implementations of column based data sets are very fast.
\because Only read the actual data you need, not the whole class.
\therefore Very easy to access the information.
$\% \mathrm{CON}$:
\because Data is less organized, depending entirely on intelligent naming of the columns.
\because References are index based, so care must be taken that the referenced data does not change order.

ROOT - RDataFrames

\% Transaction based data analysis.
\because Advertised as: "modern, high-level, type-safe,
 parallel"
\because Scales well to multi-core processing.
\because Works with C++ and / or Python.
\therefore Admittedly, the Python will likely be a mixed Python and C++.
\% Works well with simple data formats.
$\%$ Can work with complicated class structured TTree, but is more difficult.
$\%$ Does not seem to work at all with TRef or TRefArray. (?)
\because This seems to be where the ROOT analysis platform is going.
\% see: https:// root.cern/doc/master/classROOT 1 1RDataFrame.html

