JNA support for GBL Package

PF, Omar

07/01/2020

Introduction

o1 AR

Db M\

Our current track reconstruction software is separated in two parts:

- Track Finding and Fitting using seedTracker from LCSIM package

- Track Refitting using General Broken Lines (GBL) using a java translation of (part) of the
GBL cpp library

GBL Repository

Historically ported by Per and others.

The GBL java port (GBLJava) is only a partial implementation of the GBLCpp library
and, historically led to several questions whether if it was fully correct or not

I've been maintaining the package since | joined HPS. Among other things I've:

- Implemented a test example to validate the port

- Fixed a bug in measurement without scatters GBLPoints

- Ported unbiased residuals computation, treatment of holes-on-tracks as scatters

Lot of things missing:

- Refitting of trajectories from common vertex

- Refitting with external constraints and measurement
- Qutlier removal procedures

https://www.desy.de/~kleinwrt/GBL/doc/cpp/html/index.html

Introduction

1 AL

Db M\

Clearly, the current way to use GBL is not efficient when it comes to
include new features in our reconstruction code.

For every addition, it takes lot of time for translating the code and
testing and validating it against the original library.

Additionally, GBL library evolves (last svn push is Dec 2019 and |
reported one bug in the CPP version to Claus)

In our opinion, the current approach is not sustainable in the long run.

Full Port of GBL using JNA

We should realise that, while moving forward, porting by hand every single feature
of the GBL external library is not sustainable.

- GBL moves forward (last release Dec ’19), we need to update manually every-
time

- Error prone, requires validation and only partial functionalities are available.

I’'ve decided to stop maintaing GBLJava and, together with Omar, we ported
the GBL library using Java Native Access (JNA)

JNA permits us to load an external C library and use it within hps-java

It is supported by maven repository so it's easy to add it to the pom.xml file

<dependency>
<groupId>net.java.dev.jna</groupIld>

<artifactId>jna</artifactId>
<version>5.5.0</version>

</dependency>

tracking/pom.xml

https://github.com/java-native-access/jna

Full Port of GBL using JNA

SLAC
e Since GBL is a C++ library, it's necessary to e e ¢
wrap the classes under C functions GbUTrajectarys GblTrajectoryCtor(int flagCury, int flagUidir, int flag2dir) {
* Together we wrote wrappers, around the latest return new GblTrajectory(flagcury, flaguidir, flagu2dir);
GBL repository (see https://github.com/pbutti/ >
GeneralBrokenLines) to call GBL from java Trajectonys SotTrajectaryCroretrarray (6o Painte points(l, iat npoints,
using native language. We have validated the 0¥ Tiaacure, nt Traguidin, ot flaenzain) €
port against hps-java GBL and the GBLC++ std: tvector<GblPoint> apointList;
code, see hps-java jna-dev branch for Gint 1=0; tenpotnts; i+4) {
* In hps-java one interface per class need to be oot goonint - posocs 41
made to call the C++ instance: for the moment e vteotnt)s
support for GBLPoint and GBLTrajectory ’
* The port fully support current hps-java calls , (e mectenareintbist, Hlestury ot o
to GBL. Few adjustments need to be done to //5imple trajectory constructor with seed wrapper
interface them to current refitting interfaces GbUTrajectoryk GblTrajectoryCtorPtrarraySeed(Gblpointx points], int npoints,

int alLabel, double seedArrayl[],
int flagCurv, int flagUldir, int flagu2dir) {

The jan-dev branch have been tested on SLAC machines *without* a C++ installation
of the GBL library and runs just fine as it is:

- JNA is used at run-time: if the JNA classes aren’t called, no external library is needed
- We can rely on the *old* port of GBLJava for reconstruction, and things work as
usual

https://github.com/pbutti/GeneralBrokenLines
https://github.com/pbutti/GeneralBrokenLines
https://github.com/JeffersonLab/hps-java/tree/jna-dev

Pros and Cons

S NORE CONS:

- Full Real GBL C++ library port - Native Access comes with intrinsic
- No need for validation of every overhead and our interface is not
development optimised: so it's slower (15-20%) on
- Full and complete GBL functionality 100k tracks

including outlier removals, external
constraints,

proper computation of derivatives and
support for additional local derivatives

* Bottom line:
- JNA includes a validated, maintained and largely used library with minimal work
(took us couple of days to implement)
- It's slower than translating into Java, but remember that GBL refitting *is not* where
most the reconstruction time is lost (that’s the current seedTracker based track finding).
- If we pass to Kalman Filter, GBL is only needed for computing alignment
derivatives: in that case we care mostly about correctness and all the useful features.

* More modern alternatives to JNA exist: ¢ https://github.com/bytedeco/javacpp &

https://github.com/bytedeco/javacpp

Summary

Ported the *full* GBL C++ library to hps-java via JNA.

| will stop supporting and maintain GBLJava

JNA GBL C++ port is bit slower than the Java implementation. This is due to :
- Intrinsic overhead by JNA

- We didn’t write a fully optimised interface

HOWEVER:

- GBL only take small amount of time in the event reconstruction

- If we pass to KF tracks we don’t need to refit them with GBL

- We only need it for computing the local/global derivatives for MPILI.
Pede takes care of the fitting

- The advantage in having a validated, complete and supported library |
think overcomes speed.

- Nonetheless there are alternatives to JNA: https://github.com/
bytedeco/javacpp that claim to be overhead free.

- Learning how to do a JNA/JAVACPP implementation in hps-java can
be used to call other libraries that we might need in the future.

https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp

BACKUP

1 AR

D M\

A real example - Track Parameters constrained alignment

ol A~

e M\

MPII refits tracks solving for df/dq at each p->p+Dp track parameter derivatives

iteration

If the local derivatives are “small” then Dq can be large to % =i — f(%i,q,P) S Z (:))Tf) Agi |+ E (g_f) Ape .

find the Chi2 minimum i1\ ren Pt

A track parameter un-constrained fit likely to result in a

geometry which leads to biases. The dimension of the label set is arbitrary

GBL Java port, doesn’t have a support for a refit with of

track parameters constraints, GBL C++ does. fye = number of local parameters array: (0_%)

A seed-constrained fit is obtained adding a seed (0f) ’
. i nga = number of global parameters array : | — | label-array ¢

precision matrix to the X2. Ipe

Easy to show that when computing dX2/dq that terms is ¢ = residual _#£y; — f(ri.q,p)) o =Tstandard deviation of the meas

added to the derivatives

In the case of the momentum, df/d(q/p) is inflated, These need to get recomputed for each

which means that D(qg/p) is smaller-> Dp is computed point and a new trajectory formed
accordingly -> Momentum constrained aligment.

X’ (x) = Z (H,px —m;)" VL (H,,.x — m;) (from measurements)
i—1
Tscar— 1)
+ Z (Hy.ix + kO,i)I V,fll (Hy;x + ko;) (from kinks)

1=2

+ (HSX)T V. ! (H.x) (from external seed) (9)

GBL Manual

https://www.terascale.de/sites/site_terascale/content/e1443/e295960/e296478/Gbl_man.pdf

Implementation of Momentum constrain in GBL Java

| translated the code from GBL C++ to GBLJava for momentum
constraint, tested it and seems like it's working in the right way (some
checks on the derivatives should be done)
Tested on MC-FEEs (thx Jeremy)
Procedure:
- Take the initial helix
- q/pT -> q/pT + d(q/pT) ==>
w -> w + dw (curvature)
- Refit with GBL nominally, with bias w/o contraint, with bias with
constraint.
Tested very large precision matrix [strong constraint]

(o BV~
Fhm AN

10

Implementation of Momentum constrain in GBL Java

=1 A

300

250

200

150

100

50

p_bottom

p_bottom

Hard constrained fit

..

Nominal Unconstrained fit -------

Entries 3291
Mean 4.898

----------- Std Dev O 3372

P_ bottom

Entries 3287
Mean 4 437

0.3

Std Dev

..

2.5 3 3.5 4 4.5

5 5.5

track momentum [GeV]

pe Ty LN

11

Why global structures first?

el An

lllustration of possible misalignment in a telescope.

b is (a possible) solution if sub-telescopes are preferred

c is (a possible) solution if single sensors are preferred

In reality it depends of various factors including:

- Constraints (what moves what not)

- Initial sensor position uncertainty (we don’t use any information on initial

uncertainty in MPII solution)

bh)

D AN

12

CMS Tracker

|

Composite structure alignment | ©.' | | rcsae Tl ® inner
Barrels Endcaps
vrarf bc;rrcl ‘Vplx‘cl M;If crccapl Vrau)
e What | would like to propose is to implement an hierarchical £ barrel N
alignment procedure where we have alienable structures by &)) & A A
MPII that aren’t only sensors, but also sides, modules, S] L=) g J g)
UChannels and SvtBox. ‘
* This won’t solve all of our problems outlined before, but barrel layer | |pixel haifbarrel | | endcap layer disc
should provide: ¢ ,
* Same way to solve global and local misalignments: just ’) e

accumulate all information and decide which structure we — bl —
want to align. e

* Sensor positions and orientations will be relative to o - o 3in L)
composite structures and there is a natural way to ’
include constraints to the solution.

* Composite structures will be aligned minimising the

gIobaI)(2 and correlations between DoF should be taken - individual
care of modules
* This procedure is a standard in solving the alignment problem
and has been used successfully by other experiments.

CMS sketch

Level 1 (11): 4 (5) alignable structures Level 2: 32 alignable structures Level 3: 6112 modules
SCT ECC, Barrel, ECA, Pixel, (IBL) 2x9 SCT discs, 4 SCT Barrel layers, 4088 SCT modules
2x3 Pixel discs, 3 Pixel layers, 1744 Pixel modules

IBL layer 280 I1BL. modules

ATLAS sketch

13

Math behind composite structures alignment

* Residuals are computed in the local
coordinates (q) of a sensor and |
D

(pi

o1 AL
Fhm AN

=

transformed to global frame (r) by 5 o PRt

o~

—

— gl

_ T
. .I‘ o RS q+ TS . = 7 —
* For individual sensors, alignment < g
corrections are incremental

u: most sensitive direction
v: least sensitive direction

rotations AR and translations Aq w: normal to the sensor plane
which lead to
r = RTAR (q + Aq,) + T, Ur Um
» Rotations can be reduced with ac _p(10 -
9 lazo = 0 -1 22 %2 3%

respect to 3 angles. The alignment
parameters become

a=(Au Av Aw a f y)

——

14

https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

Math behind composite structures alignment

e Each composite structure has an e We need to compute the C-
assigned local coordinate system matrices
defined by the orientation matrix RotC -> Transs
R, and origin T TransG -> T@A O‘/- e
The definitions of the composite »‘ " Cy Cpy
structure alignment parameters a, C Cy Ca)
is the same of the sensor
alignment parameters. TransC -> RotS => 0 RotC -> RotS => 0
The alignment relations between
sub-component to composite i=n
structure is given by: a =) C/la,

Cia, <+— relation between position/orientation corrections

r r da, or : .
: i (C, <+— relation between derivatives

da, da; da, da,

15

Math behind composite structures alignment

(=g | Af’
Jl-l'\\o
TransC -> TransS RotC -> TransS
/ C,=R,R' lever arm
Cu Cio JAR
- - 1 ¢ .
('-1-)1 (‘:-)-) C R l R ()“ Rr l. r.sl,l r(ﬂ))
Cl=0
TransC -> RotS => 0 RotC -> RotS => 0
JAR
% = Ro(RY o= R.)RT (4)

The linear approximation euler angles of RS, gives the same column of the
(59 matrix:

C b4 C 7
¢o = MapRSVas + M, RSV, (5)

0 1 0 0
M ad = -1 0 0 "(, 3 = 0 ' .
| 0 0 0 | 1 Stoye's thesis

00 0 0 cmssw derivatives
My=|0 0 0 v, = |1

16

https://github.com/cms-sw/cmssw/blob/master/Alignment/CommonAlignmentParametrization/src/FrameToFrameDerivative.cc
https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

Constrained alignment

An equality constraint is required to allow only linear combinations of the subcompo-
nent alignment parameters, which leave the composite object alignment parameters
invariant:

="
0=> C, 'a, (5.17)
i=0
These constraints also change the interpretation of the subcomponent’s alignment pa-
rameters. They do not represent anymore the absolute corrections., which are needed
to be applied to a subcomponent. These parameters correct only the misplacement
of the subcomponents on the composite structure. Composite structures can also be
defined recursively. The corrections needed due to the misplacement of a composite
structure can be calculated with the corresponding matrices C. The total corrections
applied to sensor 7 are then:

a=a; +Cjja, + Cjrack + ...

where j.k. ... are the composite structures indices.

Stoye's thesis 17

https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

A possible scenario of HPS Alignable structures

* Here is reported the set of orientations
R and origins T (*) for possible alignable
structures as it is implemented in the
current HPS geometry code

* Notice:

- The 30.5mrad at module level in our
geometry structure

- The modules are located far from the
sensors and from the support rings
(large rot-to-trans cross terms in the C-
matrices)

* An alignable structure is just a container
of a Rotation and a translation

* C matrices can be computed in a
recursive way.

* Tracking volume can be made alienable
with identity rotation and null translation

(*) local to globalis RTq + T

Alignable Support Ring Top (aka SVT-front)

10 0 _
R= 1[0 0 -1| T=[-117.33,56.857,417.79]
01 0

UChannel46 top (aka SVT-back) - check this

0.9995 0.0 -0.0305
R=10.0305 0 0.9995 T = [14.905.8.4‘23()401.8{
0 -1 0.0

Alignable Module Top L1

T = [~122.61,59.820, 36.284]

0 1 0
R= 109995 0 -0.0304

—0.0304 0 —0.9995

Alignable Sensor Axial L1

T = [1.1566,7.8106, 38.366]

0 1 0
R=10.9995 0 -0.0304
—0.0304 0 —0.9995

Alignable Sensor Stereo L1

0.995

—0.0031
0.0303

0.0304 0

0.0998
R=|-0.995 0.0998
0.9995

18

Module to side C-Matrices examples

o1 A/
1 0 0/l 0 -58 -123.6 S
01 0 58 0 -920 module to axial side
oM—A _ 0 0 1/123.6 52.0 0
L1 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
(0.995 0.0998 0 1.34 =134 —129.0]
0.0998 —0.995 0 -134 —1.34 39.3
oM—=S _ 0 0 ~1 -124.4 -52.0 0
module to stereo side ‘Lr. 0 0 0 0995 0.998 0
0 0 0 0.0998 —0.995 0
0 0 0 0 0 -1 |

e As example, the matrix for the L1 top between the module (as composition of Axial and
Stereo sides) and the Axial side

* Notice for axial:
- Module translations are the same of axial side translations (they have the same orientation)
- Module rotations imply the same side rotation (same reason)
- Module rotations imply large sensors translations (due to the offset in constructing the
geometry discussed in previous slide)

* Notice for stereo the different orientation of the sensor local axes and the stereo angle.
19

How | implemented this, why | sucked in doing that and

how | interfaced it to MPII

o1 An
M\
First implementation in: cAli_dev labels set
Created AlignableDetectorElement class: | . [Of af
- Way to pass the SurveyVolume transforms W=t f@nap) =D (0_(11) Au+) (E) b

down to the Driver level, but mother-daughter is

lost (can be re-implemented by there must
be a better way without duplicating
information)

| compute the C-Matrices for each hit-on-track
in the GBLREefitterDriver (sucks because it’s

useless matrix multiplications for every hit.

Transforms are known after geometry
building)

The interface to MPII is very simple: just add
the derivatives to the GBLPoint, form a new
trajectory and call milleOut. Each mille binary
entry will have 6 + 6*n derivatives where n is
the number of the global structures depending
on that hit.

| still don’t compute the constrains
automatically but with pen and paper.

=1 fen

The dimension of the label set is arbitrary

array : (ng)

n;. = number of local parameters

array : ((?_f) ; label-array ¢
e

nya = number of global parameters

2z =M—f(-ruq'p”

These need to get recomputed for each
point and a new trajectory formed

e=) fe-me

measi

The constraint value ¢ is usually zero. The format is:

Constraint value
i label factor
Tl label factor
[} I

Sl |
() E C, "a;
1=\
MPIl manual

20

https://github.com/JeffersonLab/hps-java/tree/cAli_dev
https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

