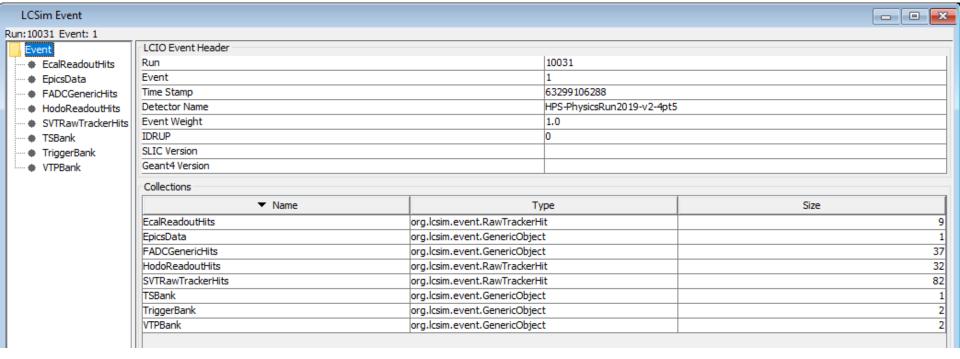
LCIO Data Improvements


Norman Graf (SLAC) HPS Software Meeting US Tax Day, 2020

Issue

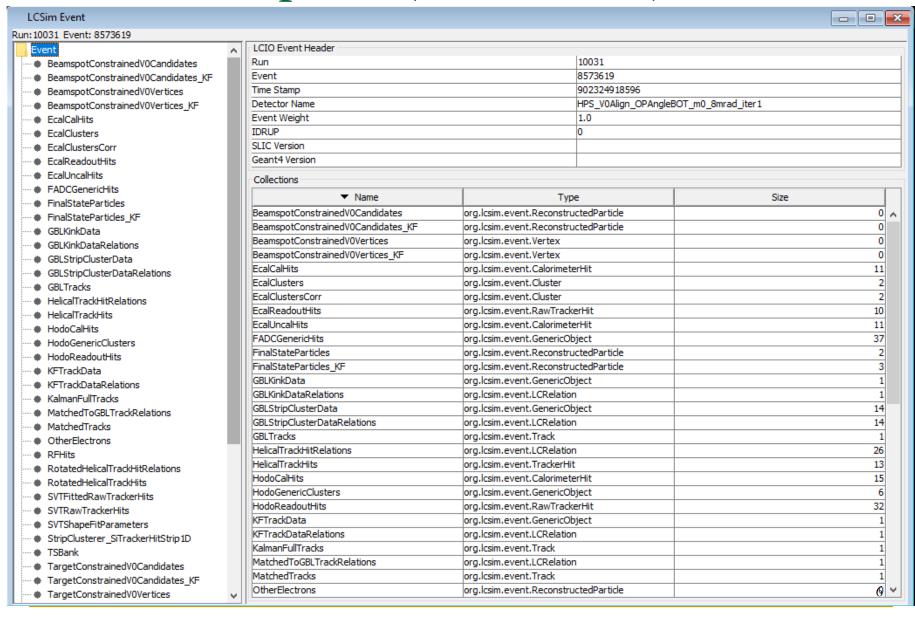
- How does a 2GB Raw data file turn into a 5, 6 or 7GB Recon data file?
- What can we do about it?
- What do we need to do about it?
- What is the role of the recon file?
- What is the role of a DST file?

evio vs LCIO

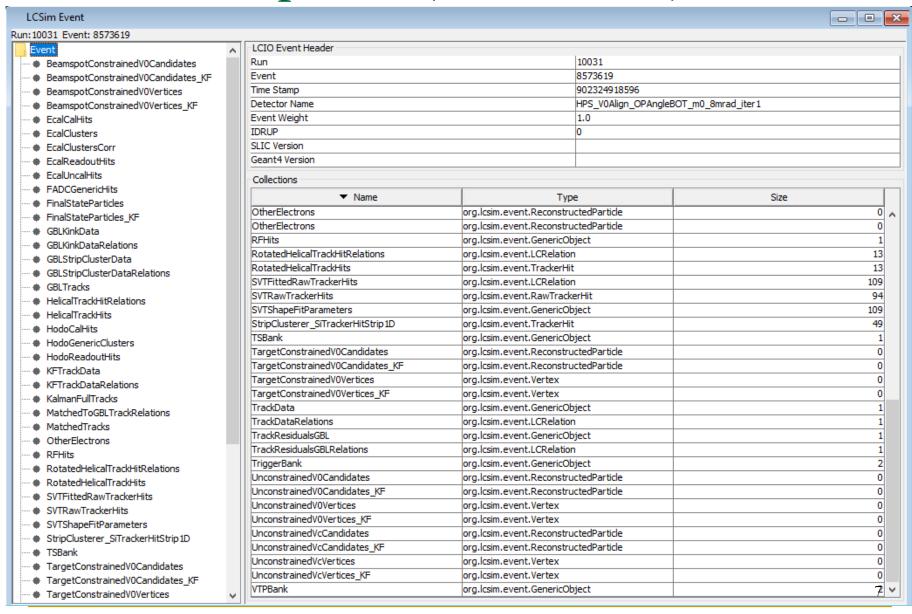
- Is it just because LCIO is a lousy file format?
- Run a no-op steering file which only converts the trigger, raw SVT, Ecal and Hodoscope data from evio to Icio. (No evio mapping for rest of EDM)

evio vs LCIO

- Compare files sizes for files with same content.
- Is -Ish

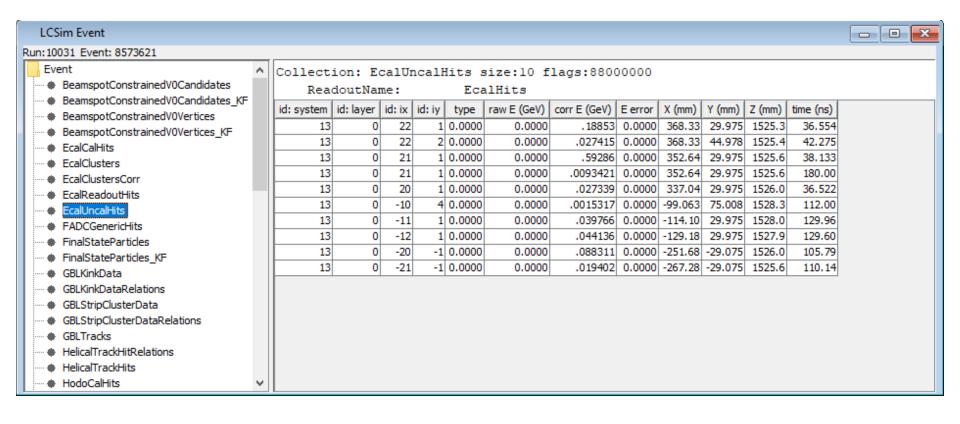

```
11M 10M Jul 15 08:22 hps_010031.1k_0.evio
6.6M 6.4M Jul 15 08:23 hps 010031.1k 0.slcio
```

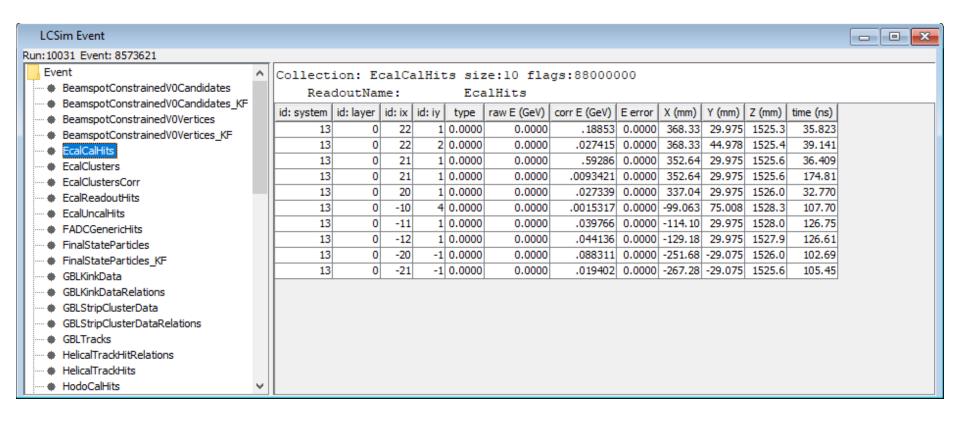
- sLCIO file is actually 1/3 SMALLER than the evio!
- Can we compress LCIO any further?6.3M 6.2M Jul 15 08:23 hps_010031.1k_0.slcio.gz
- It appears that sLCIO (LCIO EDM with SIO file format) is already a pretty good solution.
 - Many years ago significant effort was expended in developing rLCIO, LCIO EDM + root persistency.
 - It was larger, slower, and suffered from problems with every new root release. It was abandoned.


Recon Status

- Status of the reconstruction is still in flux.
- Little (no?) effort has been devoted to limiting content or file size.
- Effort concentrated on understanding efficiency, resolution, etc. i.e. "physics" performance.
- Latest "pass0" steering file in git iss687_dev
 - Includes both SeedTracker/GBL & Kalman Filter to enable comparison of tracking.
- Production Reconstruction will differ substantially.
- Nevertheless...

Recon Output I (iss687_dev)


Recon Output II (iss687_dev)


Recon Output

- So, it's clear that there is a LOT of extra data included in this file.
 - For instance, we won't have both SeedTracker/GBL and Kalman Filter tracks and ReconstructedParticles.
- Won't try to analyze every collection here, but it's clear that we need to survey what's going into the output and justify what's there.

Recon Output EcalUncalHits

Recon Output EcalCalHits

What is the role of the recon file?

- Historically we have kept all of the data, including the raw data, to enable re-reconstruction from the Icio files.
- At this point, we should be able to drop the raw waveforms and only save the fitted t0 and pulse area.
 - □ Saves ~2/3 of the original evio file size.
- Do we need to save individual Ecal crystals or SVT readout channels, or can we live with just ECal clusters or StripClusterer_SiTrackerHitStrip1D?

What is the role of the recon file?

- Use for future re-reconstruction.
- Historically we have kept all of the data, including the raw data, to enable re-reconstruction from the Icio files.
- At this point, we should be able to drop the raw waveforms and only save the fitted t0 and pulse area.
 - □ Saves ~2/3 of the original evio file size.
- Do we need to save individual Ecal crystals or SVT readout channels, or can we live with just ECal clusters or StripClusterer_SiTrackerHitStrip1D?

Are we ready to discard raw waveforms?

SVTShapeFitParameters has quite a few NaN entries...

n:10031 Event: 8573623								
Event	^	Collectio	n. SVI	TShane	FitParar	neters	size:93 flags:80000000	
BeamspotConstrainedV0Candidates		index nInt					doubleValues	
BeamspotConstrainedV0Candidates_k	F							
BeamspotConstrainedV0Vertices		1 0		0			[14.731,3.9685,1801.4,472.24,.63315]	
BeamspotConstrainedV0Vertices_KF			_	0			[30.009,7.5991,1133.0,319.97,.90737]	
		3 0	_	0			[9.1874,27.757,129.58,302.63,.73648]	
				0			[-50.202,11.417,261.94,304.45,.92477]	
EcalClustersCorr		4 0	_	0			[-27.389,NaN,200.04,297.99,.95356]	
EcalReadoutHits		5 0		0			[6.5441,NaN,210.48,305.43,.91209]	
··· EcalUncalHits		6 0		0			[31.000,NaN,157.24,290.87,.74943]	
FADCGenericHits		7 0		0			[-67.213,28.811,603.15,330.87,.97816]	
FinalStateParticles		8 0	_	0			[-60.165,NaN,180.98,302.10,.99128]	
FinalStateParticles KF		9 0		0			[28.066,2.0690,1773.9,265.07,.65742]	
		10 0		0			[31.412,8.1867,1072.2,309.23,.14044]	
GBLKinkDataRelations		11 0		0			[33.157,1.3886,1758.1,272.22,.95845]	
		12 0	-	0			[-64.836,14.432,773.61,304.97,.75370]	
GBLStripClusterDataRelations		13 0	_	0			[-58.195,2.0665,2841.7,285.01,.69962]	
GBLTracks		14 0	_	0			[8.1432,9.8795,240.38,255.10,.69962]	
		15 0	_	0			[-22.435,13.378,215.70,286.92,.87739]	
		16 0	_	0	-		[14.558,NaN,202.25,306.66,.91204]	
		17 0	_	0		5	[-62.715,NaN,1063.5,337.84,.81699]	
		18 0		0		5	[-65.032,NaN,1168.2,324.02,.91270]	
		19 0		0		5	[-27.402,NaN,1206.3,351.49,.17072]	
···· KFTrackData		20 0		0		5	[-30.742,NaN,420.05,358.81,.57599]	
···· KFTrackDataRelations		21 0	_	0		5	[-52.102,1.0998,1234.7,273.26,.55838]	
···· KalmanFullTracks		22 0		0		5	[-3.8423,31.782,159.14,272.55,.55838]	
···· MatchedToGBLTrackRelations		23 0	_	0	_	5	[-23.786,1.1386,2282.1,312.62,.71003]	
···· MatchedTracks		24 0		0		5	[48.528,5.5947,253.60,260.45,.71003]	
···· • OtherElectrons		25 0		0		5	[28.283,24.962,145.77,316.27,.85803]	
···· OtherElectrons ···· RFHits		26 0		0		5	[-76.677,79.464,399.61,340.77,.85378]	
···· RotatedHelicalTrackHitRelations		27 0		0		5	[-28.587,5.2947,1910.9,355.97,.36912]	
····· • RotatedHelicalTrackHits		28 0		0		5	[-62.609,25.862,587.68,304.91,.56710]	
+ · · · · · · · · · · · · · · · · · · ·		29 0		0		5	[9.5494,NaN,1065.2,318.57,.46879]	
SVTFittedRawTrackerHits		30 0		0		5	[17.434,NaN,953.14,342.40,.71427]	
SVTRawTrackerHits SVTShapeFitParameters	V	31 0		0		5	[-71.898,104.75,214.00,358.26,.24235]	

Optimization

- It's clear we can gain quite a lot simply by not writing out unnecessary collections of objects.
- Much of our data has been shoe-horned into existing LCIO objects or into GenericObject collections which are not optimized for HPS.
- Time to consider our own custom HPS LCIO Objects?

Tracker Hits

- Unlike the SeedTracker, the Kalman Filter only uses 1-D hits. Furthermore current TrackerHits employ a byzantine set of LCRelations to link the 3D "cross" hits to 1D strip cluster hits to 1D channel hits.
- LCIO TrackerHit is a 3D hit.
- Can gain substantial amount of space reduction by moving to a 1D hit class.
- Instead of (x,y,z) [3] and cov(x,y,z)[6] we simply store u[1] and du[1].

Ouptu Data Size Reduction

- A number of strategies can gain us a substantial reduction in the size of our recon output files.
- Dropping the "raw" waveforms is easiest.
 - Are we satisfied with out current pulse fitting?
- Not running the SeedTracker is straightforward
 - Need to validate Kalman Filter.
 - More, better tracks faster.
- Pruning un-needed collections is next.
- Can consider DST set of collections which is optimized for "physics" analysis.
 - Just ReconstructedParticles?
- Implement custom HPS LCIO classes and restructure our EDM and code to accommodate would take more time and effort.