
JNA support for GBL Package

07/01/2020

PF, Omar

2

Introduction

• Our current track reconstruction software is separated in two parts: 
- Track Finding and Fitting using seedTracker from LCSIM package 
- Track Refitting using General Broken Lines (GBL) using a java translation of (part) of the
GBL cpp library  
GBL Repository

• Historically ported by Per and others.
• The GBL java port (GBLJava) is only a partial implementation of the GBLCpp library

and, historically led to several questions whether if it was fully correct or not
• I’ve been maintaining the package since I joined HPS. Among other things I’ve: 

- Implemented a test example to validate the port 
- Fixed a bug in measurement without scatters GBLPoints 
- Ported unbiased residuals computation, treatment of holes-on-tracks as scatters 
- …

• Lot of things missing: 
- Refitting of trajectories from common vertex 
- Refitting with external constraints and measurement 
- Outlier removal procedures 
- …

https://www.desy.de/~kleinwrt/GBL/doc/cpp/html/index.html

3

Introduction

• Clearly, the current way to use GBL is not efficient when it comes to
include new features in our reconstruction code.

• For every addition, it takes lot of time for translating the code and
testing and validating it against the original library.

• Additionally, GBL library evolves (last svn push is Dec 2019 and I
reported one bug in the CPP version to Claus)  
 

• In our opinion, the current approach is not sustainable in the long run.

4

Full Port of GBL using JNA

• We should realise that, while moving forward, porting by hand every single feature
of the GBL external library is not sustainable. 
- GBL moves forward (last release Dec ’19), we need to update manually every-
time  
- Error prone, requires validation and only partial functionalities are available.

• I’ve decided to stop maintaing GBLJava and, together with Omar, we ported
the GBL library using Java Native Access (JNA)

• JNA permits us to load an external C library and use it within hps-java
• It is supported by maven repository so it’s easy to add it to the pom.xml file

 <dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>
 <version>5.5.0</version>
 </dependency>

tracking/pom.xml

https://github.com/java-native-access/jna

5

Full Port of GBL using JNA

• Since GBL is a C++ library, it’s necessary to
wrap the classes under C functions

• Together we wrote wrappers, around the latest
GBL repository (see https://github.com/pbutti/
GeneralBrokenLines) to call GBL from java
using native language. We have validated the
port against hps-java GBL and the GBLC++
code, see hps-java jna-dev branch

• In hps-java one interface per class need to be
made to call the C++ instance: for the moment
support for GBLPoint and GBLTrajectory

• The port fully support current hps-java calls
to GBL. Few adjustments need to be done to
interface them to current refitting interfaces

The jan-dev branch have been tested on SLAC machines *without* a C++ installation
of the GBL library and runs just fine as it is: 
- JNA is used at run-time: if the JNA classes aren’t called, no external library is needed 
- We can rely on the *old* port of GBLJava for reconstruction, and things work as
usual

https://github.com/pbutti/GeneralBrokenLines
https://github.com/pbutti/GeneralBrokenLines
https://github.com/JeffersonLab/hps-java/tree/jna-dev

6

Pros and Cons

PROS: 
- Full Real GBL C++ library port 
- No need for validation of every  
development 
- Full and complete GBL functionality 
including outlier removals, external
constraints, 
proper computation of derivatives and
support for additional local derivatives

CONS: 
- Native Access comes with intrinsic
overhead and our interface is not
optimised: so it’s slower (15-20%) on
100k tracks

• Bottom line: 
- JNA includes a validated, maintained and largely used library with minimal work
(took us couple of days to implement) 
- It’s slower than translating into Java, but remember that GBL refitting *is not* where
most the reconstruction time is lost (that’s the current seedTracker based track finding).  
- If we pass to Kalman Filter, GBL is only needed for computing alignment
derivatives: in that case we care mostly about correctness and all the useful features.

• More modern alternatives to JNA exist: • https://github.com/bytedeco/javacpp

https://github.com/bytedeco/javacpp

7

Summary

• Ported the *full* GBL C++ library to hps-java via JNA.
• I will stop supporting and maintain GBLJava
• JNA GBL C++ port is bit slower than the Java implementation. This is due to : 

- Intrinsic overhead by JNA 
- We didn’t write a fully optimised interface

• HOWEVER: 
- GBL only take small amount of time in the event reconstruction 
- If we pass to KF tracks we don’t need to refit them with GBL  
- We only need it for computing the local/global derivatives for MPII.
Pede takes care of the fitting 
- The advantage in having a validated, complete and supported library I
think overcomes speed.  
- Nonetheless there are alternatives to JNA: https://github.com/
bytedeco/javacpp that claim to be overhead free.  
- Learning how to do a JNA/JAVACPP implementation in hps-java can
be used to call other libraries that we might need in the future.

https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp

8

BACKUP

9

A real example - Track Parameters constrained alignment

• MPII refits tracks solving for df/dq at each p->p+Dp
iteration

• If the local derivatives are “small” then Dq can be large to
find the Chi2 minimum

• A track parameter un-constrained fit likely to result in a
geometry which leads to biases.

• GBL Java port, doesn’t have a support for a refit with
track parameters constraints, GBL C++ does.

• A seed-constrained fit is obtained adding a seed
precision matrix to the X2.

• Easy to show that when computing dX2/dq that terms is
added to the derivatives

• In the case of the momentum, df/d(q/p) is inflated,
which means that D(q/p) is smaller-> Dp is computed
accordingly -> Momentum constrained aligment.

The dimension of the label set is arbitrary

These need to get recomputed for each 
point and a new trajectory formed

track parameter derivatives

GBL Manual

https://www.terascale.de/sites/site_terascale/content/e1443/e295960/e296478/Gbl_man.pdf

10

Implementation of Momentum constrain in GBL Java

• I translated the code from GBL C++ to GBLJava for momentum
constraint, tested it and seems like it’s working in the right way (some
checks on the derivatives should be done)

• Tested on MC-FEEs (thx Jeremy)
• Procedure: 

- Take the initial helix 
- q/pT -> q/pT + d(q/pT) ==> 
 w -> w + dw (curvature) 
- Refit with GBL nominally, with bias w/o contraint, with bias with
constraint.

• Tested very large precision matrix [strong constraint]

11

Implementation of Momentum constrain in GBL Java

p_bottom
Entries 3291
Mean 4.898
Std Dev 0.3372

2.5 3 3.5 4 4.5 5 5.5
track momentum [GeV]

0

50

100

150

200

250

300

p_bottom
Entries 3291
Mean 4.898
Std Dev 0.3372

p_bottom

p_bottom
Entries 3287
Mean 4.437
Std Dev 0.3

p_bottom
Entries 3287
Mean 4.437
Std Dev 0.3

Hard constrained fit

Nominal Unconstrained fit

12

Why global structures first?

• Illustration of possible misalignment in a telescope.
• b is (a possible) solution if sub-telescopes are preferred
• c is (a possible) solution if single sensors are preferred
• In reality it depends of various factors including: 

- Constraints (what moves what not) 
- Initial sensor position uncertainty (we don’t use any information on initial
uncertainty in MPII solution)

13

Composite structure alignment

• What I would like to propose is to implement an hierarchical
alignment procedure where we have alienable structures by
MPII that aren’t only sensors, but also sides, modules,
UChannels and SvtBox.

• This won’t solve all of our problems outlined before, but
should provide:
• Same way to solve global and local misalignments: just

accumulate all information and decide which structure we
want to align.

• Sensor positions and orientations will be relative to
composite structures and there is a natural way to
include constraints to the solution.

• Composite structures will be aligned minimising the
global and correlations between DoF should be taken
care of.

• This procedure is a standard in solving the alignment problem
and has been used successfully by other experiments.

χ2

CMS sketch

ATLAS sketch

14

Math behind composite structures alignment

• Residuals are computed in the local
coordinates (q) of a sensor and
transformed to global frame (r) by

• For individual sensors, alignment
corrections are incremental
rotations and translations
which lead to

• Rotations can be reduced with
respect to 3 angles. The alignment
parameters become 
 
 

ΔR Δq

r = Rs
Tq + Ts

r = RT
s ΔRs(q + Δqs) + Ts

u: most sensitive direction 
v: least sensitive direction 
w: normal to the sensor plane 
 

a = (Δu Δv Δw α β γ)
Stoye '07

https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

15

Math behind composite structures alignment

• Each composite structure has an
assigned local coordinate system
defined by the orientation matrix

 and origin
• The definitions of the composite

structure alignment parameters
is the same of the sensor
alignment parameters.

• The alignment relations between
sub-component to composite
structure is given by: 
 

Rc Tc

ac

• We need to compute the C-
matrices 

TransC -> TransS RotC -> TransS

TransC -> RotS => 0 RotC -> RotS => 0

relation between position/orientation corrections

relation between derivatives

16

Math behind composite structures alignment

TransC -> TransS RotC -> TransS

TransC -> RotS => 0 RotC -> RotS => 0

lever arm

C21 = 0

cmssw derivatives
Stoye's thesis

https://github.com/cms-sw/cmssw/blob/master/Alignment/CommonAlignmentParametrization/src/FrameToFrameDerivative.cc
https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

17

Constrained alignment

Stoye's thesis

https://cds.cern.ch/record/1047047/files/thesis-2007-049.pdf

18

A possible scenario of HPS Alignable structures

• Here is reported the set of orientations
R and origins T (*) for possible alignable
structures as it is implemented in the
current HPS geometry code

• Notice: 
- The 30.5mrad at module level in our
geometry structure  
- The modules are located far from the
sensors and from the support rings
(large rot-to-trans cross terms in the C-
matrices)

• An alignable structure is just a container
of a Rotation and a translation

• C matrices can be computed in a
recursive way.

• Tracking volume can be made alienable
with identity rotation and null translation
(*) local to global is RTq + T

19

Module to side C-Matrices examples

• As example, the matrix for the L1 top between the module (as composition of Axial and
Stereo sides) and the Axial side

• Notice for axial: 
- Module translations are the same of axial side translations (they have the same orientation)  
- Module rotations imply the same side rotation (same reason)  
- Module rotations imply large sensors translations (due to the offset in constructing the
geometry discussed in previous slide)

• Notice for stereo the different orientation of the sensor local axes and the stereo angle.

module to axial side

module to stereo side

20

How I implemented this, why I sucked in doing that and
how I interfaced it to MPII

• First implementation in: cAli_dev
• Created AlignableDetectorElement class: 

- Way to pass the SurveyVolume transforms
down to the Driver level, but mother-daughter is
lost (can be re-implemented by there must
be a better way without duplicating
information)

• I compute the C-Matrices for each hit-on-track
in the GBLRefitterDriver (sucks because it’s
useless matrix multiplications for every hit.
Transforms are known after geometry
building)

• The interface to MPII is very simple: just add
the derivatives to the GBLPoint, form a new
trajectory and call milleOut. Each mille binary
entry will have 6 + 6*n derivatives where n is
the number of the global structures depending
on that hit.

• I still don’t compute the constrains
automatically but with pen and paper.

labels set

The dimension of the label set is arbitrary

These need to get recomputed for each 
point and a new trajectory formed

MPII manual

https://github.com/JeffersonLab/hps-java/tree/cAli_dev
https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

