Issues and Solutions
for stdhep tools

Memory Leak in stdhep util.cpp

int read_stdhep(vector<stdhep_entry> *new_event) void write_stdhep(vector<stdhep_entry> *new_event, int nevhep)
{ {
int offset = new_event->size(); hepevt_.nhep = new_event->size();
for cinti=0;ichepevt_.nhep;i++) hepevt_.nevhep = nevhep;
{ //vector<stdhep_entry>::iterator it;
struct stdhep_entry *temp = new struct stdhep_entry; for (inti-0; icnew_event_;size(); i++)
temp-sisthep = hepevt_.isthepris; {
temp-sidhep = hepevt_.idhepris; struct stdhep_entry temp = new_event->at(i);
for (intj=0;j¢2;j++){ hepevt_.istheprij=temp.isthep;
temp_,jmohepij1-hepevt_ jmohepriijs; hepevt_.idheprij=temp.idhep;
if temp_,jmohepj1=0,temp_,jmohepij—offset; for (intj-0;j2;j++) hepevt_.jmohepriiji-
} temp.jmohepij;
for (intj=0;j.2;j++){ for (intj=0;j2;j++) hepevt_.jdahepriiji=
temp-—sjdaheprji=hepevt_.jdahepriiji; temp.jdaheprji;
if temp_,jdaheprj11=0,temp_,jdaheprj+-offset; for (intj=0;j¢5;j++) hepevt_ phepriiji-temp.phepijs;
} for (intj=0;j.4;j++) hepevt_.vhepriiji=temp.vhepij;
for (intj=0;j(5;j++)temp_,pheprji1=hepevt_.phepriij; }
for (int j=0;j.4;j++)temp_yvhep(ji=hepevt_ vhepriij; has_hepev4 = false;
new_event_,push_back *temp; } new_event_.clear(;
}

return hepevt_.nevhep;

}

Issue: objects are created by “new” and pushed into a vector in read functions, but memory
allocated for objects can not be released by vector::clear() in write functions.

Solution: To not touch other source files, we use another vector, which is static global so as
not to affect other source codes of the package, to collect all pointers used in read function,
so that memory can be released in write functions

Return value for open read()
in stdhep util.cpp

int open_read(char *filename, int istream, int n_events)

{

printf("Reading from %s; expecting %d Issue: The function is supposed to return # of
events\n" filename,n_events);

if xdr_init_done, events after opening a file, but actually cannot
| StdHepXdrReadOpen(filename,n_events,istream); since changes made to a parameter inside a

else . .

{ function have no effect on the corresponding
StdHepXdrReadInit(filename,n_events,istream); argument. HOWEVGF, f# Of events per f||e needs
xdr_init_done =true; . . .

} to be used in other source codes, like in the

return n_events; updated code random_sample.cc.

}

Solution: Build two new functions StdHepXdrReadInitNTries(char *filename, int *ntries, int
ist) and StdHepXdrReadOpenNTries(char *filename, int *ntries, int ist) in stdhep/src/
stdhep-5-06-01/src/stdhep to replace StdHepXdrReadOpen(filename,n_events,istream) and
StdHepXdrReadInit(filename,n_events,istream) in open_read() so as to pass parameter’s

value by pointer

Introduction to Old random sample.cc

 We use EGS5 to build electrons for beam bunches. Suppose
that we produce N (= n * m) electrons from EGS5, where n
is # of required bunches, m is # of electrons per bunch

* Then, we use random sample cc to build n beam bunches.
of electrons for each bunch is random by Poisson with
mean of m.

* |ssue 1: We can not guarantee that there are enough
events to build n bunches since # of electrons for each
bunch is random

* Solution to issue 1: Produce a little bit more events by EGS5
asN > N +5VN

* Please use option -m to set “mean” parameter for Poisson,
otherwise, it will be calculated as /n

Issues 2 & 3 in

while (true) {
bool no_more_data =false;
while (iread_nextcistream){
close_read(istream);
if coptindcargc-1,
{

open_readcargvioptind++1,istreamy;

}

else

{
no_more_data-=true;
break;

}

}

if .(no_more_data) break;

vector<stdhep_entry> * read_event = new
vector<stdhep_entry>;

read_stdhep(read_event),

input_events.push_back(read_event);

}

random_sample.cc

while (file_n<=max_output_files) {

sprintf(output_filename,"%s_%0*d.stdhep",output_basename,output
_filename_digits,file_n++);
open_write(output_filename,ostream,output_n);
for cint nevhep =0; nevhep (output_n; nevhep++,

{

int n_merge =gsl_ran_poisson r,poisson_mu;
if .(n_merge==0,
add_filler_particlecgnew_event);
for (inti=0;icn_merge;i++)
{
intrandom_index =
gsl_rng_uniform_intcr,input_events.size();

append_stdhep g&hew_event,input_eventsirandom_indexy;

}

write_stdhep &new_event,nevhep+1;
write_filecostreamy;
}

close_writecostream;

}

* Issue 2: All events in input files are pushed into a vector, which causes very large memory
usage, depending on # of events from input file(s) produced by EGS5.

* Issue 3: Events for a beam bunch are randomly picked up from the vector, which causes that
events in the vector may be repeatedly picked up, and further output beam bunches are not

completely independent of each other

Discussion for “Dependent” Issue

Probability that a electron is not used in the
whole processing of random beam sample:

1 1
lim (1 - —)" == =~0.
N1—I>r<l>o(N) e 037

About 37% electrons produced by EGS5 are not
used, which is a big waste.

In other words, roughly 37% electrons are
repeatedly used.

It may not cause big issue for our analysis by MC
data, but we can completely avoid the issue by
improving codes.

Solution 1: New codes -
random_sample_usinginputEventsinOrder.cc

We have produced enough electrons by EGS5 to
build beam bunches, so it is not necessary to
randomly pick up events from the whole input
data sample.

In the new code, electrons are picked up in order
from input data to build beam bunches.

The code is applied by new MC production in

JLab. It completely avoids large memory usage
and dependence issue. No waste for electrons
produced by EGSS5.

Solution 2: Updates of
random_sample.cc

* |Input events are cached into vectors one by one,
where size of vectors is set by option —b (default:
1000000); then use std::shuffle to rearrange indices of
elements in vector and pick up electrons in order of
rearranged indices to build bunches.

* This code avoids too large memory usage, and can
control memory usage by option -b. Additionally, it
provides us a way to build multi beam bunch samples
using the same input data sample by EGS5 if required.
After all, cost for beam data by EGS5 is quite large if
we need a large MC sample with beam background. No
waste for electrons produced by EGSS.

