ASO-2 Qualification Workbook
Operator Supervisor: PSA 7 29 17
EOIC Supervisor: The State 28 July 2017
AD Safety Office: Paul Milles 1 August 2017
Accelerator Operations and Safety Division: RAEL 28 July 2017

Preface

This workbook lists the requirements for obtaining the Accelerator Systems Operator 2 (ASO-2) qualification level. Use this workbook to track your progress.

You may be trained by any control room operator who is qualified as an ASO-2 or higher. Ask your trainer or supervisor for clarification of anything you don't understand about this training process or about the training material.

Give your completed workbook to your supervisor as part of your ASO-2 qualification assessment. You will be notified when you are qualified as an ASO-2 and your training record will be updated.

Instructions

Trainee: For all items, review the available documentation that pertains to the subject matter. Next, ask your trainer any questions about the items listed.

Trainer: After the trainee has demonstrated an understanding of the items at the ASO-2 level, initial the corresponding underlined space.

Supervisor: After the trainee has accomplished all required objectives in this section, complete the corresponding signature block in each section.

Trainee (Print Name):
Certification Started (Date):
Certification Completed (Date):
Accelerator Operations Section Final Approvals (Signature/Date):
Operator Supervisor:
EOIC Supervisor:
EOIC Supervisor:

Table of Contents

1.	S	Safety Training	1-3
	1.1	PPS Certification	1-3
	1.2	Required Classes	1-3
	1.3	BAS Training	1-3
2.	0	Operating Fundamentals	2-4
	2.1	Beam Transport System	
	2.2	Beam Dynamics and Parameters	2-5
	2.3	Instrumentation and Diagnostics System	
	2.4	Feedback System	2-9
	2.5	RF System	2-10
	2.6	Timing System	2-11
	2.7	Control System Hardware	2-12
	2.8	Beam Containment System	2-13
	2.9	Machine Protection System	2-14
	2.10) Utilities	2-15
	2.11	Vacuum System	2-16
3.	0	Dperating Techniques	3-1
	3.1	Turning on Systems	
	3.2	Steering Beams	3-2
	3.3	Operating Feedbacks	3-3
	3.4	Operating Klystrons	
	3.5	Operating the Timing System	3-5
	3.6	Operating Magnets	
	3.7	Operating BPMs	3-7
	3.8	Using Wire Scanners	3-8
	3.9	Using Profile Monitors	3-9
	3.10	Using the Control System	3-10
	3.11	Using the ACR Hardware and Software Displays and Controls	3-11
	3.12	Using the Machine Protection System	3-12
	3.13	Using the Beam Containment System	3-13
4.	A	Area-Specific Operating Techniques	4-1
	4.1	A-Line Operating Techniques	
	4.2	LCLS Injector Operating Techniques	4-2
	4.3	LCLS Linac and LTU Operating Techniques	4-3
	4.4	LCLS Undulator, Dump, and FEE Operating Techniques	4-4
	4.5	SPEAR3 Injector	
	4.6	SPEAR3 Ring	4-7

1. Safety Training

1.1 PPS Certification

____ Complete at least 7 PPS Qualification workbooks.

1.2 Required Classes

____ Complete the *Limited Radiological Assistant (LRCA)* class.

Class Date/Time: _____

Completed: _____

1.3 BAS Training

____ Complete the SPEAR BAS and Safety Training Workbook. (SLAC-I-040-504-007-00).

2. Operating Fundamentals

The devices, systems, concepts, and other topics listed in this section are fundamental to the operation of the SLAC accelerator systems. You must thoroughly understand these fundamentals at the ASO-2 level as specified in the Accelerator System Operator II job specifications before proceeding to the operating techniques provided in the next section.

2.1 Beam Transport System

- _ Types of magnets
 - _ Solenoid magnets
 - _____ Solenoids
 - _____ Lenses
- ____ Bucking coil
- ____ Dipole magnets
- Trim winding magnets (quads and dipoles)
- ____ Corrector magnets
- _____ Bend magnets
- _____ Wiggler magnets
- _____ Undulator magnets
 - _____ Pulsed magnets
 - ____ BYKICK
- ____ Quadrupole magnets
- _____ Focusing quadrupoles
- ____ Defocusing quadrupoles

_ Stepping motor devices

- _____ Movers
- ____ Collimators
- _____ Wire scanners
- _ Laser transport optics
 - ____ Pockels cells
- ____ Beam transport lines
- ____ LCLS injector
- ____ Linac
- ____ L1
- ____ L2
- ____ BSY
- ____ LTU
- _____ Undulator
- ____ Dump
- ____ A-Line
- ____ GTL
- _____ SPEAR3 Linac
- ____ LTB
- ____ Booster
- ____ BTS
- _____ SPEAR3 Ring

2.2 Beam Dynamics and Parameters

Transv	verse dynamics
	Coordinate system
	Single particle model Equation of motion Motion in a bend Motion in a quad Motion in a drift space
	$ \begin{array}{c c} \mbox{Mathematical description of ensemble of particles (bunch)} \\ \mbox{Twiss and other important parameters} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \beta \mbox{ (beta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \mbox{ (eta)} \\ \mbox{\begin{minipage}{0.5ex} \\ \hline \end{minipage} & \eta \b$
	$\begin{array}{ccc} & \alpha \ (alpha) \\ & \gamma \ (gamma) \\ & \psi \ (psi) \ / \ \mu \ (mu) \\ & \underline{\qquad} \\ & What \ is \ phase \ advance? How \ are \ the \ phase \ advance \ and \ beta \ function \ related? \\ & \underline{\qquad} & \delta \ (delta) \\ & \underline{\qquad} & \epsilon \ (epsilon) \\ & \sigma \ (sigma) \\ & \underline{\qquad} \\ & \underline{\qquad} \\ & Give \ 2 \ examples \ of \ techniques \ for \ making \ beam \ size \ measurements \ at \ SLAC. What \ are \ the \ strengths \ and \ weaknesses \ of \ these \ techniques? \end{array}$
	Phase space ellipses Machine ellipse Beam ellipse
	Betatron tune What is the betatron tune? What affects it? Tune resonances Emittance What does the emittance parameter describe? What are the units of emittance? Why do we measure and try to control emittance? What information is needed to measure emittance? Transport (R) matrices Synchrotron damping
	Flat vs. round beams Beta and eta matching What is matching? What is Bmag?

- Longitudinal dynamics
- ____ Acceleration
- RF bucket
- _____ What is the synchrotron tune? What affects it?
- _____ Why do we measure and control the tune?
- What are the units of tune?
- _____ Bunch compression
 - In chicanes
 - ____ In the gun
- _____ BNS damping
- _____ What is chromaticity? What are its units?
 - ____ How do we measure chromaticity? Why do we measure and control it?
 - How do we control chromaticity?
- _ Special topics
- Wakefields
- Longitudinal wakefields
- Transverse wakefields
- _____ Wake loss measurement
- _____ Space charge effect
- _____ Bremstrahlung
- ____ Beam tails
- _____ Cathode quantum efficiency
- _____ Typical SLAC DLWG gradient
- Production of coherent light from electron motion in undulators
- _____ FEL saturation

2.3 Instrumentation and Diagnostics System

_ Explain which devices(s) we use to measure beam current and/or charge in the LINAC and SPEAR3, and how each device works. Which of these devices can act to shut off the beam?

____ Toroids

- ____ Direct Current Current Transformers (DCCTs)
- _____ Stripline Beam Position Monitors (BPMs)
- _____ Cavity (microwave) position monitors
- _____ Toroid comparators
- ____ ACMs

____ Explain which devices we use to measure electron bunch length in the LINAC, and how each device works.

- _____ BC1 and BC2 bunch length monitors
- Transverse RF deflector

____ How does a photomultiplier tube (PMT) work? Where do we use PMTs in LCLS? How does a scintillator work?

- _____ PMT
- _____ Scintillator

____ What devices do we use to measure the transverse beam size and/or emittance in the LINAC? What are the problems and benefits associated with each device?

- _____ Profile monitors
- _____ Wire scanners

____ What devices do we use to monitor beam losses? How do these devices work? Do any of these devices shut off the beam?

- ____ Ion chambers
- _____ BSOICs
- ____ BTMs
- ____ PMTs

____ How do the FEE gas detectors work? How are they calibrated? How do we attenuate the x-ray beam in the FEE?

- ____ Differences for hard and soft x-rays
- ____ PMTs

_____ How do we measure the beam energy at various points along the linear accelerator? How do we establish and calibrate the energy gain from injector stations when we turn on the machine after a shutdown?

____ Explain different ways to use the system we have for acquiring data that is synchronized from shot-to-shot (BSA). Explain how you would use the BSA system manually.

___ Real time BSA Matlab BSA

____ Manually from an EDEF

____ Explain where each physical beam stopper is in LCLS and SPEAR3. Which stoppers are interlocked by the PPS system?

- ___ LCLS
- _____ Mechanical shutter
- _____ RST1
- ____ TD11
- ____ ST950/960
- ____ D2
- ____ BYKICK
- _____ TDUND
- ____ SPEAR3
- ____ Chopper
- ____ LTB B1
- _____ Tungsten target
- ____ BTS stoppers
- ____ PR2
- _____ SPEAR3 ring stoppers
- ____ Remote scopes
 - ACR van scope

2.4 Feedback System

SLAC

LCI	S
	LO

- Laser power set
- Bunch charge
- Gun launch _____
- _____ Injector launch (to spectrometer)
- _____ Injector launch
- _____ X cavity launch
- _____ L2 launch
- _____ BSY launch
- DL2 launch _____
- _____ LTU launch UND launch
- _____
- DL1 energy (to spectrometer)
- DL1 and BC1 energies _____
- DL1, BC1 energies + BC1 BL _____
- DL1, BC1, BC2 energies
- Energies to BC2 & BC1 BL
- Energies & BLs to BC2 (new)
- Energies to BSY
- 6x6 Feedback
- _ SPEAR3
- Gun heater
- K2/K3 phase and amplitude
- Cable length
- FOFB
- RFFB
- **BLDS**

2.5 RF System

- _____ RF function
 - _____ Bunching
 - _____ RF acceleration
 - _____ Linac RF
 - _ Hardware devices
 - _____ Master oscillator
 - _____ Master amplifier
 - ____ MDL
 - _____ VVSs
 - _____ Analog readbacks
 - _____ Reference voltage power supply
 - _____ Modulators
 - _____ Modulator Klystron Support Unit (MKSU)
 - _____ Modulator PFN
 - _____ Thyratron
 - _____ Linac klystrons
 - _____ Phase and Amplitude Detector (PAD)
 - Programmable Input Output Processors (PIOPs)
 - _____ Sub boosters
 - _____ Glassman power supply
 - _____ Solid state subboosters
 - _____ Sub Drive Line (SDL)
 - ____ Cavities
 - ____ Waveguides
 - _____ Disk loaded waveguide for the linac
 - _____ SLED cavities
 - _____ Frequency dividers
 - _____ Isolation, Phase, and Attenuation (IØA) unit
 - RF controls and operation
 - ____ Phase control
 - _____ Fox phase shifters
 - _____ Solid state phase shifters
 - ____ Amplitude Control
 - _____ RF drive
 - ____ RF feedbacks
 - ____ L0B
 - ____ L1S
 - ____ 24-1/2/3
 - _____ SBs 29 and 30

2.6 Timing System

T '		•
1 1000	avatom	OUOPUIOU
	SVSICIII	overview
		0

- _____ Linac fiducials
- _____ Master Oscillator (MO)
- _____ Main Drive Line (MDL)
- _____ FIDOs
- _____ Linac PDUs
- _____ Simple Timing Buffer (STB)
- _ LCLS system overview
- ____ EVG
- _____ EVRs
- _____ Event codes
- _____ Laser/RF synchronization/locking
- _ Diagnostics
 - Master oscillator analog / digital status
- ____ Beamcodes, modifiers, and database
- _____ TRIGs/TRBRs
- _ Comprehensive questions
- A klystron is triggered through its CAMAC PIOP module. Draw a diagram and describe how the input pulse to the PIOP is generated. This diagram should include all of the modules and chassis between the master oscillator and PDU, as well as all of the modules and chassis between the MPG and PDU.
- In the above example, describe what happens when this trigger is deactivated. Start by tracing the path between LCLS home and the PDU.

2.7 Control System Hardware

- _____ Power supply control and interface
 - ____ Computer Automated Measurement and Control (CAMAC) system
 - _____ Power Supply Controllers (PSCs)
 - _____ Digital to Analog Converters (DACs)
 - _____ Smart Analog Modules (SAMs)
 - ____ Nuclear Instrumentation Methods (NIM) system
- _____ Flow switches
- _____ Temperature (Klixon)
- ____ RTDs
- ____ Thermocouples

2.8 Beam Containment System

Beamli	Average current monitor Dual trip comparator Flow switches (DC detectors)			
Beamli	Dual trip comparator Flow switches (DC detectors)			
Beamli	Flow switches (DC detectors)			
Beamli				
	ine components			
	Ion chamber			
	LION			
	PPS stopper cooling			
	Protection collimator (PC)			
	Beam shut-off ion chamber (BSOIC)			
	ne modes			
	D2 mode			
BCS tr	ip			
	Beam permissive			
	EVG broadcast			
	TIU			
	SBI			
	Laser safety stopper			
Genera	General			
	Calculate maximum allowable charge sent to ESA using power limit set in BAS.			
	How do we actively monitor and limit the power that can reach/be dissipated in an			
	area?			
	Under what circumstances are beamline BCS devices automatically bypassed?			

2.9 Machine Protection System

General

_____ When are the Linac slow valves automatically inserted? The fast valves?

Link Node MPS

Architecture

- _____ Link processor
- _____ Link nodes
- _____ Shut-off Mechanisms
- _____ How is it fail-safe? Why no watchdog?
- _____ Stopper masking (ignore logic)
- _____ How can you tell which devices will fault the beam when an stopper is removed?
- _____ How are devices bypassed?
- _____ What approvals are required to bypass a device?

2.10 Utilities

- ____ Electrical system
 - ____ Electrical power distribution

 - _____ Distributed substation
- _____ Variable Voltage Substations (VVSs)
- ____ Power glitches
- ____ Brown out
- _____ Site power meter
- _____ Power supply types
- _____ AC to DC converters
 - Large Power Supplies (LGPSs)
 - _____ Individually powered magnets
 - _____ String power supplies
 - ____ Shunts
 - _____ Backlegs / Trim windings
 - Boosters
 - _____ Small Power Supplies (SMPSs)
 - _____ Pulsed high voltage systems

___ Water system

- ____ Cooling towers
- ____ Low Conductivity Water (LCW) pumps
- _____ Heat exchangers
- ____ Demineralizers
- _____ MAKO still
- _____ Deaerators
- _____ Sand filters
- _____ Containment sumps
- _____ Hydrogen recombiners
- _____ Chilled water Systems
- ____ Compressed air
- ____ Gas systems
- ____ Dry nitrogen
- ____ PLIC gas
- ____ Helium gas
- ____ Argon
- ____ DCS

2.11 Vacuum System

_____ What is the pressure range spanned by SLAC's vacuum systems? Go down the machine and give an estimate of the nominal pressure in each area.

_____ What types of vacuum pumps and gauges are used on site? What are their operating principles? Over what pressure range do they function?

_____ How are vacuum pumps connected to the beamline?

_____ What types of vacuum valves are used on site? What purpose does each type of valve serve?

____ What are the potential consequences of sudden increases in pressure?

_____ How does the machine respond when pressure spikes are detected? How should we as operators respond?

3. Operating Techniques

The lists in this section present operating techniques. You must have the ability to perform the techniques at the ASO-2 level as specified in the Accelerator System Operator II job specifications before proceeding to the area-specific details provided in the next section.

3.1 Turning on Systems

- _____ Review the cold checkout checklists in the area-specific turn-on checklist documents.
- _____ Review hot checkout checklists in the area-specific turn-on checklist documents.
- _____ Review the area-specific turn on procedures.

3.2 Steering Beams

- _____ Manually steer beams using BPMs and correctors
- _____ Power steer beams
- _____ Feedback setpoint steer
- _____ Make a bump (find FJ Decker program)
- _____ Remove questionable or faulty BPMs
- _____ Steer to a reference

3.3 Operating Feedbacks

- _____ Enable and disable feedbacks
- _____ Start and stop feedbacks
- _____ Re-gold feedbacks
- _____ View and interpret feedback logs
- _____ Update feedback act refs, restore feedback acts
- ____ Config/Ref. Orbit
 - ____ Configure
 - ____ Measurements
 - ____ Actuators
 - _____ States and gains
 - ____ Matrices
 - _____ Timer parameters
 - _____ Other feedback parameters
 - _____ Reference orbit
 - _____ Collect reference orbit
 - ____ Edit reference orbit
 - ____ Load reference orbit
- ____ Configure 6x6 feedback
- _____ Configure Fast Longitudinal feedback

3.4 Operating Klystrons

- _____ Phase klystrons/sub-boosters
- ____ Gold klystrons
- _____ Understand klystron CUD and 3-letter codes for faults
- _____ Interpret fast time plots
- _____ Assign and deassign klystron triggers
- _____ Measure and adjust sub-booster and klystron timing
- _____ Understand the use of LEM and use the LEM algorithm
- _____ Turn the modulator on/off
- _____ Reset the modulator
- _____ Adjust klystron amplitude
- _____ Verify/alter auto trim control
- _____ Understand klystron auto-trim
- _____ IPL individual klystron
- _____ Set klystron rate using mask bits
- _____ Home Fox phase shifter
- _____ Decode DSTA and klystron status
- _____ Set and tune klystrons for SLEDed and unSLEDed modes

3.5 Operating the Timing System

- _____ Set up and modify beam codes
- _____ Monitor and adjust kicker timing
- _____ Monitor and troubleshoot fiducials timing
- _____ Assign and deassign triggers
- _____ Assign/deassign/modify TMVAs
- _____ Reinit PDUs
- _____ Describe loss of LCLS RF/laser synchronization and run resync GUI
- _____ LCLS Event/Trigger displays

3.6 Operating Magnets

- ____ Trim magnets
- ____ Calibrate magnets
- _____ Standardize magnets
- ____ Degauss magnets
- _____ Decode Hardware Status
- ____ Decode Software Status
- ____ Decode secondaries
- _____ Decode CAMAC Status (CSTA)
- ____ Load correct configuration
- _____ Set magnets to on/off line
- _____ Setup multi-knob
- ____ Calibrate enable
- _____ Standardize enable
- ____ DAC Zero
- ____ Act to DES

3.7 Operating BPMs

- How are BPMs calibrated in the linac? In the undulator hall?
- ____ Calibrate toroids
- _____ Scale TMIT values
- _____ Take buffered data acquisition
- _____ Use LCLS BSA system to acquire data
- _____ Save reference orbits
- ____ Diagnose bad BPMs
- _____ Set to on/off line
- ____ Check/adjust BPM timing
- _____ Create measurement definitions

3.8 Using Wire Scanners

- _____ Measure emittance
- _____ Interpret data (BMAG and ellipses and individual wire profiles)
- _____ Measure energy spread
- _____ Measure tails with single wire scan displays
- _____ Change and re-init scan ranges
- _____ Run wire loop macro

3.9 Using Profile Monitors

- _____ Select cable video channels
- _____ Operate video distribution
- _____ Operate hardwired video
- _____ Digitize a profile monitor
 - ____ Operate profile monitor mechanical controls (iris, lamp, and so forth)

3.10 Using the Control System

_ LCLS home

- _____ Be able to launch and use the archive viewer
- _____ How do you add a channel to the archiver?
- _____ Demonstrate how to use CVS to edit an EPICS panel.

_____ Demonstrate how to reset an offline IOC.

- _____ How do you determine the alarm limits of a PV?
- _____ Be able to launch LCLS home from your office
- _____ Use CMLOG

3.11 Using the ACR Hardware and Software Displays and Controls

- _____ For the hardware displays and controls, know the location of and how to read the:
- _____ Annunciator panel
- _____ Fire alarm panel
 - _____ Master beam control panel
- ____ For the software displays and controls, know the location of and how to read the
- _____ SDS CUD
- ____ MPS CUD
- _____ Klystron CUD
- ____ CUD control
- _____ Special display

3.12 Using the Machine Protection System

- ____ For the LCLS link node MPS, know how to:
- _____ Identify a fault
- _____ Bypass an input
- _____ Reset a fault
- ____ In the MPS GUI, know how to
 - _____ Show fault history
- ____ Find inputs
 - _____ Find recent faults
- ____ For the guardian, know how to
- _____ Reset a fault
- _____ Find inputs
- _____ Find recent faults

3.13 Using the Beam Containment System

- _____ Clear faults on all required BCS devices
- _____ Check dual trip comparator trip points
- _____ Check average current monitor trip points
- _____ Perform BAS checks for all active BCS devices

4. Area-Specific Operating Techniques

The operating procedures for each accelerator area are organized as follows:

Setup: These procedures are used to set beam and system parameters to values specified in the operating and reference manuals. These procedures are typically implemented at the beginning of a run or after a down time. However, they may also be used during running if beam conditions fall outside the specified values.

Tuning: These procedures are used to maintain and make incremental improvements to beam conditions and machine operation. These procedures are used during running.

Diagnostics: These procedures are used to set up diagnostics and interpret and quantify running conditions for a particular region. These procedures are used continuously during normal running to monitor beam conditions and to isolate problems when they arise.

4.1 A-Line Operating Techniques

- _____ Set up
 - Turn on and standardize magnets
 - _____ Set up injector beam
 - _____ Set up linac beam
 - _____ Deliver beam to BSY
 - _____ Deliver beam to A-Line
 - _____ Turn on and gold launch feedbacks

____ Diagnostics

- _____ Monitor injector beam utilizing PMTs, toroids, and BPMs
- _____ Monitor linac beam utilizing BPMs, feedbacks, and PLIC
- _____ Monitor BSY energy utilizing the flip coil and energy feedback.
- ____ Describe A-line beam losses utilizing profile monitors, ion chambers, and A-line PLIC.
- _____ Minimize losses
- ____ Optimize energy spread
- _____ Optimize spot size at the ESA target
- _____ Find the energy of an unknown energy beam

4.2 LCLS Injector Operating Techniques

- _____ Turn on and calibrate the LCLS gun
- _____ Turn on and calibrate L0a
- _____ Turn on and calibrate L0b
- _____ Turn on and calibrate L1s
- _____ Turn on and calibrate L1x
- _____ Set up laser/cathode for switch between low and high current running
- _____ Save/load partial and full configurations
- _____ Set up beam to gun spectrometer
- _____ Set up beam to SAB
- ____ Set up beam to TD11
- _____ Perform Schottky scan and interpret results
- _____ Perform L0a, L0b, L1s phase scans and interpret results
- _____ Set gun solenoid strength
- _____ Recover from a bucket jump
- _____ Perform laser maintenance
- _____ Set DL1 energy
- _____ Set BC1 energy
- _____ Set bunch length/peak current in BC1
- _____ Complete the updated list provided by your supervisor for this section

4.3 LCLS Linac and LTU Operating Techniques

- _____ Take bunch length measurements using TCAVs
- _____ Perform individual klystron phase scans in L1, L2, and L3
- _____ Perform L2 and L3 phase scans and interpret results
- _____ Perform slice emittance measurement and interpret results
- _____ Set BC2 energy
- _____ Change between overcompressed and undercompressed setup
- _____ Measure and identify sources of jitter in the linac and LTU
- _____ Complete the updated list provided by your supervisor for this section

4.4 LCLS Undulator, Dump, and FEE Operating Techniques

- _____ Insert and remove undulators
- _____ Perform undulator beam finder wire scan
- _____ Insert and remove undulators
- _____ Perform undulator K measurement
- _____ Adjust taper for maximum FEL power
- _____ Steer beam in undulator
- _____ Calibrate undulator RF BPMs
- _____ Perform BBA
- _____ Perform energy loss measurement
- _____ Control foil attenuators in dump
- _____ Set solid attenuators in FEE
- _____ Set gas attenuators in FEE
 - ____ View beam on direct imager

4.5 SPEAR3 Injector

4.5.1 Establish Beam in the Linac

- ____ Verify that the Gun Heater is on
- ____ Describe the Gun Heater power supply location
- ____ Open vacuum valves in the linac, booster and LTB
 - _____ Vacuum valve controller location, software and hardware
 - ____ Ion gauge indications, software and hardware location
- ____ Ensure the CEBAF power supplies are on (quads and correctors)
 - ____ Identify location of PSs
 - ____ Load and save lattice
 - ____ Describe software control for CEBAF PSs

____ Turn on Alpha PS

- ____ Describe location of PS
- ____ Load and save lattice (web based)
- ____ Describe software control for Alpha PS
- ____ Set the scraper correctly
- ____ Ensure availability of triggers (10Hz and RF)
- ____ Turn on the Modulators
 - ____ Describe location of HVPS breakers and PSs for K2 and K3
 - ____ Identify the sections of the linac powered by K2 and by K3
 - ____ Reset modulators (needed when first turned on) to get triggers
- ____ Describe software controls for the linac RF, K2 and K3 and gun
- ____ Look at the gun and linac temperature in the history buffer to verify they are correct
 - ____ Know the location of the TCW and gun chiller
- ____ Monitor the GT1 signal and turn on the feedback
 - ____ Define operational value for the GT1 FB
 - ____ Use Pulse Signal Monitor (PSM) diagnostics to ensure correct values
- ____ Describe how to turn on and set:
 - ____ Phase feedback for K2, K3 and Gun
 - ____ K2 and K3 power feedback
 - ____ Controls for the feedbacks
- ____ Check GT2 to ensure the beam propagates beyond the Alpha magnet
- ____ Enable chopper trigger control
- ____ Monitor linac beam on the ACMs

- _____ Set alpha scraper position to keep beam intensity below the BAS limit
- ____ Turn on the LTB-B1 magnet PS
 - ____ Describe the location of hardware and software controls
 - ____ Monitor beam on the LTB B1 screen
 - ____ Adjust beam to the correct energy and phase
- ____ Describe how to Save/Restore values for any parameter/control panel

4.5.2 Interlocks

- Linac interlocks:
 - ____ PPS fault
 - ____ BCS
 - ____ Chopper HV
 - ____ ACMs
 - ____ BSOICs
 - ____ Top-off interlock (lasts for ~2 seconds)
 - ____ Frequent fill module
 - ____ MPS
 - ____ Alpha magnet
 - ____ Vacuum
 - ____ RF VSWR
 - ____ Modulator interlocks chassis
 - ___ LCW
 - ____ SPEAR orbit software interlock

4.6 SPEAR3 Ring

____ DC Power Supplies

- ___ Dipoles
 - How does the power supply for a SPEAR3 dipole magnet differ from that of another type of magnet (e.g., a quad)?
- ____ Quadrupoles
- _____ Sextupoles
- ____ On/off procedure
 - _____ How do you turn off an individual DC power supply? All of them?
 - How are the individual set point values for each magnet determined?
 - ____ What is meant by LATVAL? IMONSP? IMON?
 - _____ What are the MCORS?
 - _____ How do you turn the MCORS off and on?

__SPEAR RF

- ____ Main RF panel
 - _____ How do you get to the main RF EPICS panel?
 - _____ How do you adjust the gap voltage?
 - _____ How do you turn off the RF?
 - _____ How do you reset faults and turn the RF station on?
- How do you bring up the ring after an access or a downtime?

____ DCCT

- ____ What is the DCCT?
- _____ Where is the DCCT device physically located?
- _____ What is the DCCT used for?
- _____ What is the NPCT and how does it relate to the DCCT?
- ____ FOFB/RFFB/BLDS
 - _____ What do the FOFB. RFFB, and BLDS acronyms stand for?
 - _____ How does the FOFB work?
 - _____ How does the RFFB work? What's its relationship to FOFB?
 - _____ How does BLDS work?

____ Topoff

____ Interlocks

- ____ What are the topoff interlocks intended to protect against?
- If a topoff interlock is tripped, what action does it take?
- _____ Master Key
 - _____ What function does the Topoff Master Key serve?
 - _____ Where is it normally kept?

___Bucket Selection

____ Buck-o-Mat

- ____ What is Buck-o-Mat?
- ____ What is the primary function of Buck-o-Mat?

What other tasks can be performed from the Buck-o-Mat panel? Bucket Timing Chasses

____ Orbit Interlock

_____ What is the Orbit Interlock intended to protect against?

_____ How does it work?

What action is taken if the Orbit Interlock is faulted?

____ BSOICs

_____ Kickers

_____ Insertion Devices/Control

_____ Beam Lines

Revision Record			
Revision Number	Revision Date	Section(s) Affected	Description of Change
R001	July 26, 2017	All	Updated signature blocks on page 1. General updates.
R000	April 26, 2010	All	General updates. New document number. (old document says R004 but should be R000.)

Revision Record