OVERVIEW OF

FLOWDOWN OF REQUIREMENTS

AND RELATED MATTERS

C. R. LAWRENCE

 $\begin{array}{c} \text{CMB-S4 MEETING, UCSD} \\ 2019 \text{ October } 17 \end{array}$

 $0.5 \text{ B} \Rightarrow 100 \text{ M/yr} \Rightarrow 300 \text{ FTE/yr}$

300 people cannot be in causal contact

changes in one sub-sub-system affect other parts of the project

How to ensure that: parts made in causally disconnected universes work together? what is built does what it's supposed to do? How to ensure that: parts made in causally disconnected universes work together? what is built does what it's supposed to do?

- Basic answer is to
 - work out a design that can achieve the science goals within cost and other constraints
 - divide it into pieces that can be built acausally according to local requirements
 - build the pieces and test them against requirements
 - assemble the pieces and test them at each level of integration

all within budget/schedule constraints that rule the universe

TOOLS

- Science Traceability Matrix
 - Does the entire experiment do what it is supposed to do?
 - Summarizes the science requirements and what it takes to realize them
- Error budgets
 - Dividing the pie
- Requirements
 - What to build?
 - Levels $1 \rightarrow n$, corresponding to the entire system down to subsystems
- Work Breakdown Structure
 - Who builds it?

- CMB-S4 is still in the preliminary design phase. Things can and will change.
- CD-2 (TBC) marks "ready to build". Change is expensive, and risky.
- A more detailed and fine-grained schedule will be available soon.

- "Good enough" is! "Better" costs more!
- Requirements on facilities?
- Quality assurance?
- Documentation?
- Design-driving science and "free" science
- STM

Science goals \rightarrow simulations \rightarrow Measurement req's \rightarrow simulations \rightarrow Instrument req's \rightarrow simulations \rightarrow Mission req's