LAT Report

Judy Racusin (LAT Deputy Analysis Coordinator)

On behalf of Peter Michelson (LAT PI), Gulli Johannesson (LAT Analysis Coordinator), for the LAT Collaboration

11 year skymap Pass 8 (P8_P305) Source class E > 1 GeV

4FGL

- 8 year source catalogs
 - 5065 sources
 - Source list: gll_psc_v20.fit
- Paper submitted to ApJS, arXiv:1902.10045
- Improvements relative to 3FGL
 - o Pass 8 data
 - New Galactic Diffuse model (gll_iem_v07.fits)
 - Weighted maximum likelihood analysis
 - Tested all sources with three spectral models (power law, log normal and power law with subexponential cutoff)
 - Modeled 75 sources as extended emission regions
 - Light curves and variability in one year and two months time bins
 - Updated counterpart catalogs
- https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/

Table 1. Previous Fermi-LAT catalogs

Acronym	IRFs/Diffuse model	Energy range/Duration	Sources	Analysis/Reference
1FGL	P6_V3_DIFFUSE	$0.1 - 100 \; \mathrm{GeV}$	1451 (P)	Unbinned, F/B
	gll_iem_v02	11 months		Abdo et al. (2010a)
2FGL	$P7SOURCE_V6$	0.1-100 GeV	1873 (P)	Binned, F/B
	$gal_2yearp7v6_v0$	2 years		Nolan et al. (2012)
3FGL	$P7REP_SOURCE_V15$	$0.1-300~\mathrm{GeV}$	3033 (P)	Binned, F/B
	gll_iem_v06	4 years		Acero et al. (2015)
FGES	$P8R2_SOURCE_V6$	$10~{\rm GeV}-2~{\rm TeV}$	46 (E)	Binned, PSF, $ b < 7^{\circ}$
	gll_iem_v06	6 years		Ackermann et al. (2017b)
3FHL	$P8R2_SOURCE_V6$	$10~{\rm GeV}-2~{\rm TeV}$	1556 (P)	Unbinned, PSF
	gll_iem_v06	7 years		Ajello et al. (2017)
FHES	$P8R2_SOURCE_V6$	$1~{\rm GeV}-1~{\rm TeV}$	24 (E)	Binned, PSF, $ b > 5^{\circ}$
	gll_iem_v06	7.5 years		Ackermann et al. (2018)
4FGL	P8R3_SOURCE_V2	$0.05~{ m GeV}-1~{ m TeV}$	5065 (P)	Binned, PSF
	gll_iem_v07 (\S 2.4.1)	8 years		this work

New Diffuse Model (gll_iem_v07.fits)

Updates/Changes

- New H I survey
- New rotation curve
- New spectral line profile fitting
- New interpolation across the GC and anticenter regions

Details:

https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/4fgl/Galactic_Diffuse_Emission_Model_for_the_4FGL_Catalog_Analysis.pdf

LAT Software

- New version of FermiTools (1.1.7)
 released Oct 1, includes new energy
 dispersion handling
- Analyses using the new diffuse model and 4FGL must take into account energy dispersion
 - Especially important < 300 MeV and ~2-3
 GeV
- Documentation:
 https://fermi.gsfc.nasa.gov/ssc/data/a
 nalysis/documentation/Pass8_edisp_usage_future.html

Fermitools/Fermipy (in collaboration with FSSC)

Recent updates

- Adding PLSuperExpCutoff2 spectral model
- Energy dispersion
- Weighted likelihood (especially important in Galactic Plane < 1 GeV)
- Bug fixes

Possible upcoming additions to fermipy

- Support for using different pixelizations in fermipy
- Batch farm processing support (for large scale parallel processing, e.g., light curves or spectra)
- Generic stacking analysis framework

Figs 22 & 23 from 4FGL

Spacecraft File Reprocessing

- Adding velocity vector columns beneficial for pulsar analyses
 - Allows for complete spacecraft position solution from spacecraft file
 - Validation studies complete
- Modified altitude correction improves calculation of Geodetic Lat/Lon
 - Completing validation
- Reprocessing starts soon
 - Takes ~1 month

Multimessenger: Gravitational Wave Follow-up

- LIGO-Virgo
 - O3a (3rd LIGO-Virgo Observing Run) April 1 October 1, 2019
 - O3b November 1, 2019 April 30, 2020
 - 33 candidate detections (21 BBH, 4 BNS, 2 MassGap, 4 NSBH, 2 Terrestrial)
 - https://gracedb.ligo.org/superevents/public/O3/
- LAT analysis run on every GW Sky Map
 - No significant counterparts detected
 - Two independent LAT pipelines make slightly different analysis choices, run on separate systems
 - GCN Circulars put on on every event
- Plan to create public facing GW follow-up FSSC table
 - Contain summary of observations, upper limit maps, links to GCNs

GW event (with link to graceDB)	Confluence page	LIGO GCN	Type of event	Instant	Time to max coverage	In SAA?	Lowest	Highest UL	New source detected?	Comments
S190901ap	S190901ap	GCN 25608	BNS	37%	5 ks (98%)	No	5e-8	3e-7	No	Analysis performed on the updated sky map
S190828I	S190828I	GCN 25503	ввн	22%	5.1 ks	No	1.2e-10	6.7e-10	No	
S190828j	S190828j	GCN 25497	ввн	0%	10 ks (52%)	No	4.3e-10	8.5e-8	No	
S190814bv	S190814bv	GCN 25324	NSBH	100%		No	3.1e-10	8.5e-10	No	Analysis performed on the updated sky map
S190728q	S190728q	GCN 25187	MassGap (52%) BBH (34%)	58%	5.8 ks (95%)	No	2.3E-10	2.7E-8	No	Updated sky map released after this analysis. Reached >99% of max coverage at about 2.1 ks.
S190727h	S190727h	GCN 25164	ввн	61%	2.1 ks (100%)	No	1.6E-10	1.3E-09	No	GCN sent on July 27. Current analysis corresponds to Ligo/Virgo map updated on August 1.
S190720a	S190720a	GCN 25115	ввн	45%	4 ks (100%)	No	1.4E-10	3.9E-09	No	
S190718y	S190718y	GCN 25087	Terrestrial (BNS 2%)	30%	4 ks (98%)	No	9.8E-11	1.1E-07	No	LVC performed additional analysis, and maintained the status as a binary merger candidate.
S190707q	S190707q	GCN 25012	ввн	35%	6.6 ks (100%)	No	2.3E-10	6.8E-09	No	Updated sky map released after this 7 analysis.

Multimessenger: Neutrino Follow-up

LAT-IceCube Studies

- 10 Year neutrino point source searches Extragalactic sources from 3FGL, weighted with IceCube sensitivity
- NGC 1068 in a p-p dominated scenario (Seyfert 2 @12.5 Mpc, possible signal hard to explain physically or background source)
- Time dependent neutrino emission from 3LAC
- Multi-wavelength studies of neutrino source candidates
- Source population study
- Multi-epoch modeling of TXS0506+056 and predictions for its long-term neutrino emission

Realtime Follow-up

- LAT Source searches for each HESE, Gold, Bronze event
- ATels + MWL follow-up observations

Catalogs

- Recently Published
 - 2nd LAT GRB Catalog
- Submitted
 - o 4FGL
- In-progress
 - Solar Flare Catalog
 - Dark Matter Catalog
 - Flaring sources
 - o 3PC (Pulsars)
 - 4LAC (AGN) source list (ArXiv:1905.10771)
- Proposed
 - Incremental 4FGL every 2(?) years
 - Same diffuse/pipeline as 4FGL
 - Rerun for new sources and associations
 - Should produce ~500 new sources every 2 years
 - o 5FGL?

Light Curve Repository

- Proposed in 2019 Senior Review
 - Aid in neutrino counterpart identification
- Implementation Plan
 - Based upon FAVA infrastructure (7-day photometric binned transient variability search, automatically triggers follow-up likelihood analysis)
 - Distributed likelihood tool developed for GW counterpart searches is starting point
 - Maintain light curves of 4FGL sources on timescales of days, weeks, months???
- Concerns
 - O How to add new sources?
 - Crowded regions
 - Computationally expensive
- Prototype page
- Comments/Suggestions?

Source ID	RA	Dec	Gall	Gal b	Association	Classification
FL8Y J0000.4-7353	0.106	-73.8956	307.716	-42.7555		
FL8Y J0001.2+4740	0.3104	47.6791	114.247	-14.3444	CRATES J000119+474202	bcu
FL8Y J0001.2-0747	0.3148	-7.7871	89.045	-67.2962	PMN J0001-0746	bll
FL8Y J0001.4+2112	0.365	21.2055	107.626	-40.1762	TXS 2358+209	fsrq
FL8Y J0001.5-4156	0.397	-41.9444	334.259	-72.018	1RXS J000135.5-415519	bcu
FL8Y J0001.7+3503	0.4367	35.0508	111.561	-26.7213		
FL8Y J0002.1+7503	0.5493	75.0545	119.703	12.4923	CRATES J000233+745945	bcu
FL8Y J0002.1-6728	0.5426	-67.4719	310.083	-48.9666	SUMSS J000215-672653	bcu
FL8Y J0002.9+6216	0.7305	62.2793	117.323	-0.0629432	PSR J0002+6216	PSR
FL8Y J0003.1+2208	0.7839	22.1444	108.417	-39.3621		
FL8Y J0003.1-5248	0.7768	-52.8098	318.993	-62.7853	RBS 0006	bcu
FL8Y J0003.2+2511	0.8113	25.1953	109.36	-36.4031		
FL8Y J0003.3+0718	0.8364	7.3024	102.529	-53.6534		
FL8Y J0003.3-5905	0.8333	-59.0941	314.253	-56.9643	AT20G J000313-590547	bcu
FL8Y J0003.4-1927	0.851	-19.4639	65.2215	-76.5821	WISE J000318.67-192722.3	bcu
FL8Y J0003.6+3059	0.9036	30.9842	111.002	-30.7773		
FL8Y J0004.0+0840	1.0062	8.6724	103.493	-52.4007	RFC J0003+0841	bcu
FL8Y J0004.0+5714	1.0177	57.2489	116.533	-5.0332		
FL8Y J0004.0-1149	1.0105	-11.8172	84.6388	-71.0751	PMN J0004-1148	bcu
FL8Y J0004.0-4004	1.0144	-40.07	337.103	-73.7594		
FL8Y J0004.4-4738	1.1194	-47.6347	323.956	-67.5311	PKS 0002-478	fsrq
FL8Y J0004.8+6623	1.2199	66.398	118.288	3.94699		4.0
FL8Y J0005.8+3823	1.4614	38.398	113.2	-23.6107	\$4 0003+38	10-4
FL8Y J0006.3-0620	1,5937	-6.3457	93,6386	-66.6196	VCS J0006-0623	bll