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Fermi LAT E>10 GeV

Fermi LAT E>10 GeV using 7 years of data (~700,000 photons)




Motivation




Example: Fermi bubbles

Integrated intensity, £ = 1.0 - 10.0 GeV
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STATISTICAL METHODS

Significance of integrated residuals for £ = 6.4 — 289.6 GeV
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From LAT Event to Photon

—» Filters —

Reconstruction Classification
Direction Background
Energy Quality
Photon Classes For each class point
Transient spread function,
energy dispersion and
Source instrumental

Clean background vary




From LAT Event to Photon 1

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned likelihood tutorial.html

Energy and time and zenith angle
Photon quality

prompt> gtselect evclass=128 evtype=3
Input FT1 file[] @binned_events.txt prompt>gtmktime

Output FT1 file[] 3C279_binned_filtered.fits Spacecraft data file[] L181126210218F4FQED2738_S(C00.fits
RA for new search center (degrees) (0:360) [] INDEF Filter expression[] (DATA_QUAL>Q)&X(LAT_CONFIG==1)

Dec for new search center (degrees) (-90:90) [] INDEF Apply ROI-based zenith angle cut[] no

ot o T o reaion Sdcanee>) (0:180) LI INOEF  Event data file[] 3C279_binned_filtered.fits

end time (MET in $) (0:).[3 INDEF Output event file name[] 3C279_binned_gti.fits

lower energy limit (MeV) (0:) [] 100 prompt>

upper energy limit (MeV) (0:) [] 500000

maximum zenith angle value (degrees) (0:180) [] 90

Done.

prompt>

Bin the data in energy and space

prompt> gtbin

Type of output file (CCUBE|CMAPILCIPHAL|IPHAZ IHEALPIX) [PHAZ] CMAP

Event data file name[] 3C279_binned_gti.fits

Output file name[]] 3C279_binned_cmap.fits

Spacecraft data file name[] NONE

Size of the X axis in pixels[] 150

Size of the Y axis in pixels[] 150

Image scale (in degrees/pixel)[] @.2

Coordinate system (CEL - celestial, GAL -galactic)[] CEL

First coordinate of image center in degrees (RA or galactic 1)[] 193.98

Second coordinate of image center in degrees (DEC or galactic b)[] -5.82
Rotation angle of image axis, in degrees[] 0.0

Projection method Projection method e.g. AITIARCICARIGLSIMERINCPISINISTGITAN: [] AIT
gtbin: WARNING: No spacecraft file: EXPOSURE keymord will be set equal to ontime.
prompt> ds9 3C279_binned_cmop.fits &


https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned_likelihood_tutorial.html

From LAT Event to Photon 2

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned likelihood tutorial.html

prompt> mokedFGLxwl .py gll_psc_v18, fit 3C279_binned_gti.fits -0 3C279_input_model . xml
=G SFERMI_DIR/refdata/fermi/galdiffuse/gll_ien v@7.fits -g gll_ iem v@7

-1 SFERMI_DIR/refdata/fermi/galdiffuse/1s0 PBR3_SOURCE_V2Z_v1.txt

-1 is0_PBR3_SOURCE_VZ vl -s 120 -p TRUE
prompt>

Livetime map

prompt> gtltcube zmax=90
Event data file[] 3C279_binned_gti.fits
Spacecraft data file[] L181126210218F4FQED2738_SC00.fits
Output file[] 3C279_binned_ltcube.fits
Step size in cos(theta) (0.:1.)[] 0.025
Pixel size (degrees)[] 1
Working on file L181126210218F4FQED2738_SC00.fits
|

Create the prediction for the model

prompt> gtsrcmaps

Exposure hypercube file[] 3C279_binned_ltcube.fits
Counts map file[] 3C279_binned_ccube.fits

Source model file[] 3C279_input_model.xml

Binned exposure map[] 3C279_binned_allsky_expcube.fits
Source maps output file[] 3C279_binned_srcmaps.fits
Response functions[CALDB]

Create the model

Exposure map
prompt> gtexpcube?

Livetime cube file[] 3C279_binned_ltcube.fits

Counts map file[] none

Output file name[] 3C279_binned_expcube.fits

Response functions to use[] PSR3_SOURCE_V2

Size of the X oxis in pixels[] 3

Size of the Y oxis in pixels[] 3

Imoge scale (in degrees/pixel)[] .2

Coordinote system (CEL - celestiol, GAL -goloctic) (CELIGAL) [] CEL
First coordinate of image center in degrees (RA or galoctic 1)[] 193.98
Second coordinate of image center in degrees (DEC or galactic b)[) -5.82
Rotation angle of image oxis, in degrees[]) @

Projection method e.g. AITIARCICARIGLSIMERINCPISINISTGITAN[] AIT

Start energy (MeV) of first bin[] 100

Stop energy (NeV) of last bin[] 500009

Number of logarithmically-spaced energy bins[] 37

Computing binned exposure MOP......ccvvuvsrnrvnns !

Perform the fit

prompt> gtlike refiteyes ploteyes sfile«3(279_binned_output.xml

Statistic to use (BINNEDIUNBINNED)[] BINNED

Counts map file[] 3C279_binned_srcmaps.fits

Binned exposure map[] 3C279_binned_allsky_expcube.fits
Exposure hypercube file[] 3C279_binned_ltcube.fits

Source model file[] 3C279_input_model .xml

Response functions to use[] CALDB

Optimizer (DRMNFBINEWMINULITIMINULTIDRMNGBILBFGS)[] NEWMINUIT


https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned_likelihood_tutorial.html

What can | infer from my observation?

Detect a
Source!

Source
Position?

VVhat

Spectral
Shape!
Error

Estimate!




Measurements in y-ray astronomy

¢ |s a source significantly detected?
— If so, what is its flux?

— If not, what is upper limit on the flux?

e What kind of spectrum does it have?
— What is its spectral index?

e What is its location in the sky?

e What are the errors on these values?

e |s the source variable?
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What can | infer from my observation?
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The Method of Maximum Likelihood

“a simple recipe that purports to lead to
the optimum solution for all parametric
problems and beyond” ~ Stigler

Long history of evaluation: Gauss, Laplace,
Fisher, Wilks...

Broad applicability to many measurement
problems.



Good things about maximum likelihood

General framework for
statistical questions.

Unbiased, minimum
variance estimate as
sample size increases.

Asymptotically Gaussian:
allows evaluation of
confidence bounds &
hypothesis testing.

Well studied in the
literature.

Starting point for Bayesian
analysis.

12



GooeHhings about maximum likelihood

Cautions
e General framework for e Only answers the
statistical questions. question asked.

e Unbiased, minimum
variance estimate as
sample size increases.

e Asymptotically Gaussian: e Be aware of small
allows evaluation of number regimes and
confidence bounds & departure from Gaussian
hypothesis testing. assumption

e Well studied in the
literature.

e Starting point for Bayesian e Starting point for

analysis. Bayesian analysis.

13



Maximum likelihood technique

Given a set of observed data

e produce a model that accurately
describes the data, including
parameters that we wish to
estimate,

e derive the probability (density) for
the data given the model
(probability density function, PDF),

e treat this as a function of the model
parameters (likelihood function),
and

e maximize the likelihood with respect
to the parameters - ML estimation.

Likelihood
Function

14



Maximum likelihood basics

X =A{x;} ={x1,22,...,xn}
© = {6} ={61,0,,...,00m}

Likelihood Function L(6|X) = P(X|0)

e Conditional probability rule for independent
events: P(A,B) = P(A)P(B|A) = P(A)P(B)

CPR Independence

e For independent data:
P(X[©) = P({zi}|©) = P(21|©)P(z, ..,zN|O) = - - -
= P(21|0)P(z2|0) - -- P(zn[0O) = HP(xil@)
£(©lx) = [ Pilo) |

15



ML estimation (MLE)

e Parameters can be estimated by maximizing
likelihood. Easier to work with log-likelihood:

InL£(0) =InL(6|X) = ZlnPa:,|@

e Estimates of parameters {0x}from solving
simultaneous equations: Hing

=0
00; |1 N
_ _(6-6)
e For one parameter, if we have: L(§) ~e 2%
then: 9%InLC B _l Gaussian
0% |, o2 approximation

2nd derivative is related to “errors”

16



Example: Normal distribution

e Suppose the data x1,x2,...,xn is
drawn from a N(u,0?) distribution,

(xiyai)
where 1 and o are unknown.

e all measurements are of a constant  p
flux with Gaussian errors

_(:z:-—F)2
Probabilities P(ai| F) = \/; ¢ a0
mo;

Likelihood Function

)2
lnE(F):—Z(Q:"ZU;,F) —Zlnai—gln%r

17




Example: x? fit of constant

1 _(x=-m?
fx'(x.—) — \/2_1'0(_} 20 .

Since the X; are independent their joint pdf is the product of the individual pdf’s:

n (1“—#)2

1 "o
ZLlyeee T yO) = C i=1""242
f( 1 nlu ) (\/2—170)

For the fixed data z,,...,z,, the likelihood and log likelihood are

f(l'h---»:rnlu,a)=( \/2‘_“0) e Timn 8- m(f(x.,...,x,Ju,a))=;nln(\/2_n)—nm(a>)—§(“‘

Since In(f(zy,...,z,|u, o)) is a function of the two variables u, & we use partial derivatives
to find the MLE. The easy value to find is ji:

af(zyy... ,xnlp, o) - . (z¢ — p) _ - I £ Et""'r‘. -
o _ZT_Oa;x,-—nuzz-n—‘T—x
To find & we differentiate and solve for o:
Of (@1y....Tulppo) 0 = (zi—p)? c2 iy (Ti — p)?
Oo _—¢;+ZT_0:>G_ n '

We already know ji = Z, so we use that as the value for g in the formula for 4. We get the
maximum likelihood estimates

-~

14

= the mean of the data
n

o\ 1 > .
i = i) = E ~(z; = %)® = the variance of the data.
im1

'Ql,_‘

S

—ep -
o
= 2
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Fermi-LAT Analysis

Fermi-LAT analysis is performed with photon counts.

Photon counts are binned in energy and pixels.

Photon counts of the data are compared to the ones from the model.

This is done with the so called template fitting: a fit is performed

varying the free parameters of the model in each energy bin
independently and fitting the model to the data in each pixel.

Counts
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19



Example: Event counting experiment

My Gamma-ray

Counter ™

e Model: Poisson process with mean n events
of A; )\ne—)\
P(z|0) — P(n|)\) =

n! constant WRT A
e Log likelihood: In L(A) =nln A — A —Jned

Data cpt Npre
e ML estimate and error in Gaussian
regime:
OdlnLl no ‘A B ‘
D) Il = |A=n
1 0%In L _n =>‘02 — ‘ Gaussian
o4 B oX% |5 N2 N approximation
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Log-likelihood profile and errors

0 T Poissor likel

Large number of events — Gaussian

,e Gauss .x:;ro:nm’.:tr::: _— ] i

- / \ approximation reasonably accurate
2.5 . . . .

. Log-likelihood profile provides a

st/ n = 100 \\|  more accurate estimate for small
' ) number of events

8o B3 90 95 100 105 110 113 120

Poisson mean |A)

2In L(A\) =2InL(\) — 1

0 . Poissor likelitoog
L Gaussian apgeoximation ——
S RETEEERS .............. _ ] 3 o +10.33
Log-likelihood profile provides a
2.5

better error estimate

=2\ o X o n+1.77
(I o n=27  nop A=201T

Poisson mean [A)
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About Wilks’ Theorem

¢ Likelihood ratio test compares goodness of fit of a
alternate model hypothesis to a null hypothesis

®* Wilks’ Theorem: in limit that sample size n approaches 9,

the test statistic TS for nested models* is distributed like x2
for the degrees of freedom different between the models

TS =2 In Likelihood for alternate hypothesis
Likelihood for null hypothesis

We have a probability!
*Simulation checks highly encouraged for
complicated applications



Confidence regions

In problems with multiple parameters.
Saw earlier that we can calculate “asymmetric

errors” by finding points where 2inl decreases by
1.0: 2-sided 10 confidence interval (68%)

Actually this comes from LRT (Wilks’ theorem).
This is region where null hypothesis that
parameter value has some value cannot be
rejected at given confidence level.

But what to do if likelihood depends on more
than our parameter of interest?

It depends...

23



Log-likelihood profile and errors

As in the single-variable case, because of the symmetry of the (Jaussmn function
between 8 and 9 one finds that contours of constant In L or x? cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

InL(@) > InLypax —AlnL , (36.58)
0 ' N /
0, T 9 ¥
é‘ ‘ N ("'umer
i|” ~~ :
‘t‘ \r'/\Q | ‘;Uq
' / ) —
~— 0 —~—0;—] \‘f\ ¢\
b, 6

Figure 36.5: Standard error ellipse for the estimators #; and #;. In this case the
correlation is negative.

Table 36.2: A,x2 or 2A In L corresponding to a coverage probability 1 — a in the
large data sample limit, for joint estimation of m parameters.

(1-a) (%) m=1 m=2 m=3

68.27 1.00 230 353
PDG 90. 271 461  6.25

. 95. 384 599  7.82
http:/pdg.Ibl.gov/2018/ o | M weoR

reviews/rpp2018-rev- 99, 663 921 1134
statistics.pdf 99.73 9.00 11.83 14.16

24


http://pdg.lbl.gov/2018/reviews/rpp2018-rev-statistics.pdf

Profile likelihood

Confidence regions with nuisance parameters
Rolke, et al., NIM A, 551, 493 (2005)

Often we are either concerned only with the
one parameter, or wish to treat the multiple
parameters separately (ignore covariance).

Produce “profile log-likelihood” curve, a
function of only one parameter (at a time),
maximized over all others.

LRT says this should behave as x2(1).

Define confidence region using this function
exactly as before.

25


http://adsabs.harvard.edu/abs/2005NIMPA.551..493R

Hypothesis testing

Compare likelihoods of two hypotheses to see
which is better supported by the data.

Likelihood-ratio test (LRT) & Wilks’ theorem.

Given a model with N+M parameters:
(") — {91, .o ,9N,9N+1, . ..,9N+M}
where N have true values: o7, ... 6%

Values of likelihood under two hypotheses:

[,1 — [,(él, .. ,éN, éN—{—la c ooy éN—+—M)
Lo=LOT,....08,081,. .. Onir)
“Ratio” distributed as: ‘2(111 L, —1InLo) ~ XZ(N)‘

Terms and conditions apply 26



Overwhelming astrophysical evidences of the existence
..of dark matter

Large halos around Galaxies
» Galaxy rotation dynamics
Rubin+(1980)

Comprises majority of mass in Galaxies
« Galaxy cluster dynamics
Zwicky (1937)

“Cold” and not baryons (p, n)
* Deuterium abundance

Allz‘lost c?llisionless Schramm and others (1980s)
+ "Bullet” cluster « Cosmic background structure
Clowe+(2006) WMAP(2010), Planck(2015)

27



Dark matter properties

Requirements for a good dark matter candidate :
- Must have lifetime 1y » Tu.

» Must be electrically neutral.
- Must interact very weakly with ordinary matter.
- Must have correct relic density: Qy = 0.22.

Weakly Interacting Massive Particles (WIMPs)

28



Indirect detection of dark matter

X ) Production SM p-bar
(collider)
e+
Direct
Detection
gamma rays

Indirect .
Detection SM anti-D
-@m

Fermi-LAT

L

N\
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Gamma-ray sky from dark matter

TR Lo
Satellite galaxies Galactic Center Milky Way Halo
Low background and good Good statistics, but source Large statistics, but diffuse
source id, but low statistics confusion/diffuse background background

Spectral Lines

Isotropic contributions
Little or no astrophysical uncertainties, good

Galaxy Clusters Large statistics, but astrophysics,

source id, but low sensitivity because of ..
y Low background, but low statistics Galactic diffuse background

expected small branching ratio

Simulation: Pieri+ 2011PhRvD..83b3518P 30


http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011PhRvD..83b3518P&db_key=AST&link_type=ABSTRACT&high=535b0cd7aa11669

Example of profile likelihood

« The search for DM from M31 is performed by fixing the annihilation
DM channel leaving free to vary the mass and cross section.

* Below | show the results for one simulation.

 With the profile likelihood you can find the best fit and error for the
cross section.

Injected signal, M,,,=89 GeV

102 15.0 !
0,_ MDM:89 GeV| ,,,,,,,,,,, . ,,,,,,,,,,,,,,,,,,,,
13.1 : :
S N
11.2
19.4 RO
S
175 § | | | |
4. =15F T """""""""" """"""""""
136 : : : :
B | - —————YSYNYNYNMNS}]}] NN
3.8 ‘ ‘
225 USRI SUUUUUUURUUUUUURIE SUUUUURU UORRO
19 . . . .
—-30 L I ! ]
0.0 10-28 10-27 10-26 10-25 10-24 10-23

<ov> [ecm? /s]

m, [GeV]
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Hypothesis testing: SED curvature

PL (Lpr)
PLE (LpLE)

E?dN/dE [GeVem™ %!

TSPLE = 2 - (log EPLé) — log ﬁpL)

curv

TSPLE > g

urv
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Hypothesis testing: TS of a source

Log Lo = Log Liem+ Log
Liso+ LOg LsouRrces

Log L1 = Log Liem+ Log
| Liso+ Log Lsources+
Log LtesTsouRcEs

s =2-(logL 1“—log£() )

33



Hypothesis testing: Variability of a source

10 years flux
4 UGC 11041

10'7-: H
b1 *
im0 o
T4 K ‘1 | II}
+ In,, II . '

® [ph/cm?/s)

¢
¢ TI ¢I + <+
> .

|
L
1077 (T4 ' I 'I ’
L 24 4
4 | * + |

-

A A A A
-y

>

56000 56200 56400 56600 56800 57000 57200 57400
MJD [days]

T'Syar = 2 |log L({F;}) — log L(Feonst)] = 2 Z log L;(F;) — log L;(Feonst)]
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Hypothesis testing: localization

34°21"

Old Position

1z New Position
68% Uncertainty
99% Uncertainty

18'

15- IR

2xAlnL

GLAT
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GLON



Summary
MLE provides

e Framework for parameter estimation of
a given model

e Covariant errors through inverse of
Fisher matrix

e Asymmetric errors through profile
likelihood

e Hypothesis testing of of models
through Wilks’ theorem



Example: x2 fit of constant

¢ independent measurements of
flux with errors (i, 04)

¢ all measurements are of a F
constant flux with Gaussian errors

(z;—F)*2

1 . 20'?'-2

e
\V 21o;

Probabilities P(z;|F) =

Likelihood Function

)2
lnE(F):—Z(xz F) —Zlnaz-—%ln%r

2
20;
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Example: x2 fit of constant

e Log likelihood: C

2nstant with respect to F
(z; — F) )
InL(F)=—)" = Y Inzp<_

e Maximize for MLE of F

Oln L z; — F . Y x;/o?
P~ 2 I
e Curvature gives “error” on F:
1 Ll 1 Y 1
of 0P |y ol [T /o




