Intro to Maximum Likelihood

Mattia Di Mauro (heavily inspired by Liz Hays and Steve Fegan's 2013 notes)

Fermi-LAT Summer School 2019

Fermi LAT E>10 GeV

Fermi LAT E>10 GeV using 7 years of data (~700,000 photons)

Motivation

Example: Fermi bubbles

 10^{-1}

10

E (GeV)

 10^{2}

(data-model) / sqrt(model)

From LAT Event to Photon

For each class point spread function, energy dispersion and instrumental background vary

From LAT Event to Photon 1

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned_likelihood_tutorial.html

Energy and time and zenith angle

prompt> gtselect evclass=128 evtype=3
Input FT1 file[] @binned_events.txt
Output FT1 file[] 3C279_binned_filtered.fits
RA for new search center (degrees) (0:360) [] INDEF
Dec for new search center (degrees) (-90:90) [] INDEF
radius of new search region (degrees) (0:180) [] INDEF
start time (MET in s) (0:) [] INDEF
end time (MET in s) (0:) [] INDEF
lower energy limit (MeV) (0:) [] 100
upper energy limit (MeV) (0:) [] 500000
maximum zenith angle value (degrees) (0:180) [] 90
Done.
prompt>

Photon quality

prompt>gtmktime
Spacecraft data file[] L181126210218F4F0ED2738_SC00.fits
Filter expression[] (DATA_QUAL>0)&&(LAT_CONFIG==1)
Apply ROI-based zenith angle cut[] no
Event data file[] 3C279_binned_filtered.fits
Output event file name[] 3C279_binned_gti.fits
prompt>

Bin the data in energy and space

prompt> gtbin Type of output file (CCUBEICMAPILCIPHA1IPHA2IHEALPIX) [PHA2] CMAP Event data file name[] 3C279_binned_gti.fits Output file name[] 3C279_binned_cmap.fits Spacecraft data file name[] NONE Size of the X axis in pixels[] 150 Size of the Y axis in pixels[] 150 Image scale (in degrees/pixel)[] 0.2 Coordinate system (CEL - celestial, GAL -galactic)[] CEL First coordinate of image center in degrees (RA or galactic l)[] 193.98 Second coordinate of image center in degrees (DEC or galactic b)[] -5.82 Rotation angle of image axis, in degrees[] 0.0 Projection method Projection method e.g. AITIARCICARIGLSIMERINCPISINISTGITAN:[] AIT gtbin: WARNING: No spacecraft file: EXPOSURE keyword will be set equal to ontime. prompt> ds9 3C279_binned_cmap.fits &

From LAT Event to Photon 2

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned_likelihood_tutorial.html

prompt> make4FGLxml.py gll_psc_v18.fit 3C279_binned_gti.fits -o 3C279_input_model.xml

-G \$FERMI_DIR/refdata/fermi/galdiffuse/gll_iem_v07.fits -g gll_iem_v07

-I \$FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R3_SOURCE_V2_v1.txt

-i iso_P8R3_SOURCE_V2_v1 -s 120 -p TRUE

prompt>

Create the model

Livetime map

prompt> gtltcube zmax=90
Event data file[] 3C279_binned_gti.fits
Spacecraft data file[] L181126210218F4F0ED2738_SC00.fits
Output file[] 3C279_binned_ltcube.fits
Step size in cos(theta) (0.:1.)[] 0.025
Pixel size (degrees)[] 1
Working on file L181126210218F4F0ED2738_SC00.fits
.....!
prompt>

Exposure map

prompt> gtexpcube2 Livetime cube file[] 3C279_binned_ltcube.fits Counts map file[] none Output file name[] 3C279_binned_expcube.fits Response functions to use P8R3_SOURCE_V2 Size of the X axis in pixels 300 Size of the Y axis in pixels 300 Image scale (in degrees/pixel)□ .2 Coordinate system (CEL - celestial, GAL -galactic) (CELIGAL) [] CEL First coordinate of image center in degrees (RA or galactic 1)□ 193.98 Second coordinate of image center in degrees (DEC or galactic b)□ -5.82 Rotation angle of image axis, in degrees[] 0 Projection method e.g. AITIARCICARIGLSIMERINCPISINISTGITAN[] AIT Start energy (MeV) of first bin[] 100 Stop energy (MeV) of last bin 500000 Number of logarithmically-spaced energy bins[] 37 Computing binned exposure map.....!

Create the prediction for the model

prompt> gtsrcmaps Exposure hypercube file[] 3C279_binned_ltcube.fits Counts map file[] 3C279_binned_ccube.fits Source model file[] 3C279_input_model.xml Binned exposure map[] 3C279_binned_allsky_expcube.fits Source maps output file[] 3C279_binned_srcmaps.fits Response functions[CALDB]

Perform the fit

prompt> gtlike refit=yes plot=yes sfile=3C279_binned_output.xml

Statistic to use (BINNED!UNBINNED) BINNED Counts map file 3C279_binned_srcmaps.fits Binned exposure map 3C279_binned_allsky_expcube.fits Exposure hypercube file 3C279_binned_ltcube.fits Source model file 3C279_input_model.xml Response functions to use CALDB Optimizer (DRMNFBINEWMINUITIMINUITIDRMNGBILBFGS) NEWMINUIT

What can I infer from my observation?

Measurements in γ-ray astronomy

- Is a source significantly detected?
 - If so, what is its flux?
 - If not, what is upper limit on the flux?
- What kind of spectrum does it have?
 - What is its spectral index?
- What is its location in the sky?
- What are the errors on these values?
- Is the source variable?

What can I infer from my observation?

The Method of Maximum Likelihood

"a simple recipe that purports to lead to the optimum solution for all parametric problems and beyond" ~ Stigler

Long history of evaluation: Gauss, Laplace, Fisher, Wilks...

Broad applicability to many measurement problems.

Good things about maximum likelihood

- General framework for statistical questions.
- Unbiased, minimum variance estimate as sample size increases.
- Asymptotically Gaussian: allows evaluation of confidence bounds & hypothesis testing.
- Well studied in the literature.
- Starting point for Bayesian analysis.

- General framework for statistical questions.
- Unbiased, minimum variance estimate as sample size increases.
- Asymptotically Gaussian: allows evaluation of confidence bounds & hypothesis testing.
- Well studied in the literature.
- Starting point for Bayesian analysis.

 Only answers the question asked.

 Be aware of small number regimes and departure from Gaussian assumption

 Starting point for Bayesian analysis.

Maximum likelihood technique

Given a set of observed data

- produce a model that *accurately* describes the data, including parameters that we wish to estimate,
- derive the probability (density) for the data given the model (probability density function, PDF),
- treat this as a function of the model parameters (likelihood function), and
- maximize the likelihood with respect to the parameters - ML estimation.

Maximum likelihood basics

- Conditional probability rule for independent events: P(A, B) = P(A)P(B|A) = P(A)P(B)
- For independent data:

$$P(X|\Theta) = P(\{x_i\}|\Theta) = P(x_1|\Theta)P(x_2, ..., x_N|\Theta) = \cdots$$
$$= P(x_1|\Theta)P(x_2|\Theta)\cdots P(x_N|\Theta) = \prod_i P(x_i|\Theta)$$
$$\mathcal{L}(\Theta|X) = \prod_i P(x_i|\Theta)$$

ML estimation (MLE)

• Parameters can be estimated by maximizing likelihood. Easier to work with log-likelihood:

$$\ln \mathcal{L}(\Theta) = \ln \mathcal{L}(\Theta|X) = \sum_{i} \ln P(x_i|\Theta)$$

- Estimates of parameters $\{\hat{\theta}_k\}$ from solving simultaneous equations: $\frac{\partial \ln \mathcal{L}}{\partial \theta_j}\Big|_{\{\hat{\theta}_k\}} = 0$
- For one parameter, if we have: $\mathcal{L}(\theta) \sim e^{-\frac{(\theta-\hat{\theta})^2}{2\sigma_{\theta}^2}}$ then: $\frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2}\Big|_{\hat{\theta}} = -\frac{1}{\sigma_{\theta}^2}$ 2^{nd} derivative is related to "errors"

Example: Normal distribution

Example: χ^2 fit of constant

$$f_{X_i}(x_i) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}.$$

Since the X_i are independent their joint pdf is the product of the individual pdf's:

$$f(x_1,\ldots,x_n \mid \mu,\sigma) = \left(\frac{1}{\sqrt{2\pi}\,\sigma}\right)^n \mathrm{e}^{-\sum_{i=1}^n \frac{(x_i-\mu)^2}{2\sigma^2}}$$

For the fixed data x_1, \ldots, x_n , the likelihood and log likelihood are

$$f(x_1, \dots, x_n | \mu, \sigma) = \left(\frac{1}{\sqrt{2\pi}\,\sigma}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}}, \quad \ln(f(x_1, \dots, x_n | \mu, \sigma)) = -n\ln(\sqrt{2\pi}) - n\ln(\sigma) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2},$$

Since $\ln(f(x_1, ..., x_n | \mu, \sigma))$ is a function of the two variables μ , σ we use partial derivatives to find the MLE. The easy value to find is $\hat{\mu}$:

$$\frac{\partial f(x_1,\ldots,x_n|\mu,\sigma)}{\partial \mu} = \sum_{i=1}^n \frac{(x_i-\mu)}{\sigma^2} = 0 \implies \sum_{i=1}^n x_i = n\mu \implies \hat{\mu} = \frac{\sum_{i=1}^n x_i}{n} = \overline{x}.$$

To find $\hat{\sigma}$ we differentiate and solve for σ :

$$\frac{\partial f(x_1,\ldots,x_n|\mu,\sigma)}{\partial\sigma} = -\frac{n}{\sigma} + \sum_{i=1}^n \frac{(x_i-\mu)^2}{\sigma^3} = 0 \implies \hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i-\mu)^2}{n}.$$

We already know $\hat{\mu} = \overline{x}$, so we use that as the value for μ in the formula for $\hat{\sigma}$. We get the maximum likelihood estimates

$$\hat{\mu} = \overline{x} = \text{the mean of the data}$$
$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{1}{n} (x_i - \hat{\mu})^2 = \sum_{i=1}^n \frac{1}{n} (x_i - \overline{x})^2 = \text{the variance of the data.}$$

Fermi-LAT Analysis

- Fermi-LAT analysis is performed with photon counts.
- Photon counts are binned in energy and pixels.
- Photon counts of the data are compared to the ones from the model.
- This is done with the so called template fitting: a fit is performed varying the free parameters of the model in each energy bin independently and fitting the model to the data in each pixel.

Example: Event counting experiment

- Model: Poisson process with mean of λ : $P(x|\theta) \rightarrow P(n|\lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$
- My Gamma-ray Counter ™ **n events**

Constant WRT λ

• Log likelihood: $\ln \mathcal{L}$

$$n \mathcal{L}(\lambda) = n \ln \lambda - \lambda - b \alpha!$$

Data cpt Npred

• ML estimate and error in Gaussian regime:

$$\begin{split} &\frac{\partial \ln \mathcal{L}}{\partial \lambda} = \frac{n}{\lambda} - 1 \implies \hat{\lambda} = n \\ &\frac{1}{\sigma_{\lambda}^2} = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial \lambda^2} \right|_{\hat{\lambda}} = \frac{n}{\hat{\lambda}^2} \implies \sigma_{\lambda}^2 = n \end{split} \begin{array}{c} \text{Gaussian} \\ \text{approximation} \end{split}$$

Log-likelihood profile and errors

Large number of events – Gaussian approximation reasonably accurate

$$\sigma_{\lambda}^2 = n$$

Log-likelihood profile provides a more accurate estimate for small number of events

$$2\ln\mathcal{L}(\lambda) = 2\ln\mathcal{L}(\hat{\lambda}) - 1$$

n = 100; $\hat{\lambda} = 100.0^{+10.33}_{-9.67}$

Log-likelihood profile provides a better error estimate

n = 2;
$$\hat{\lambda} = 2.0^{+1.77}_{-1.10}$$

About Wilks' Theorem

- Likelihood ratio test compares goodness of fit of a alternate model hypothesis to a null hypothesis
- Wilks' Theorem: in limit that sample size n approaches ∞, the test statistic TS for nested models* is distributed like χ² for the degrees of freedom different between the models

TS = 2 In <u>Likelihood for alternate hypothesis</u> Likelihood for null hypothesis

We have a probability! *Simulation checks highly encouraged for complicated applications

Confidence regions

In problems with multiple parameters.

- Saw earlier that we can calculate "asymmetric errors" by finding points where 2InL decreases by 1.0: 2-sided 1σ confidence interval (68%)
- Actually this comes from LRT (Wilks' theorem). This is region where null hypothesis that parameter value has some value cannot be rejected at given confidence level.
- But what to do if likelihood depends on more than our parameter of interest?
- It depends...

Log-likelihood profile and errors

As in the single-variable case, because of the symmetry of the Gaussian function between θ and $\hat{\theta}$, one finds that contours of constant $\ln L$ or χ^2 cover the true values with a certain, fixed probability. That is, the confidence region is determined by

$$\ln L(\theta) \ge \ln L_{\max} - \Delta \ln L$$
, (36.58)

Figure 36.5: Standard error ellipse for the estimators $\hat{\theta}_i$ and $\hat{\theta}_j$. In this case the correlation is negative.

Table 36.2: $\Delta \chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1 - \alpha$ in the large data sample limit, for joint estimation of *m* parameters.

	$(1 - \alpha)$ (%)	m = 1	m=2	m = 3
	68.27	1.00	2.30	3.53
PDG	90.	2.71	4.61	6.25
http://pda.lbl.gov/2018/	95.	3.84	5.99	7.82
<u> </u>	95.45	4.00	6.18	8.03
reviews/rpp2018-rev-	99.	6.63	9.21	11.34
statistics.pdf	99.73	9.00	11.83	14.16

Profile likelihood

Confidence regions with nuisance parameters Rolke, et al., NIM A, 551, 493 (2005)

- Often we are either concerned only with the one parameter, or wish to treat the multiple parameters separately (ignore covariance).
- Produce "profile log-likelihood" curve, a function of only one parameter (at a time), maximized over all others.
- LRT says this should behave as $\chi^2(1)$.
- Define confidence region using this function exactly as before.

Hypothesis testing

- Compare likelihoods of two hypotheses to see which is better supported by the data.
- Likelihood-ratio test (LRT) & Wilks' theorem.
- Given a model with *N+M* parameters: $\Theta = \{\theta_1, \dots, \theta_N, \theta_{N+1}, \dots, \theta_{N+M}\}$ where *N* have true values: $\theta_1^T, \dots, \theta_N^T$

26

Overwhelming astrophysical evidences of the existence of dark matter

Comprises majority of mass in GalaxiesGalaxy cluster dynamicsZwicky (1937)

Almost collisionless • "Bullet" cluster Clowe+(2006)

Large **halos** around Galaxies

Galaxy rotation dynamics
Rubin+(1980)

"Cold" and not baryons (p, n)

- Deuterium abundance Schramm and others (1980s)
- Cosmic background structure *WMAP*(2010), *Planck*(2015)

Dark matter properties

Requirements for a good dark matter candidate χ :

- Must have lifetime $T_X \gg T_{U.}$
- Must be electrically neutral.
- Must interact very weakly with ordinary matter.
- Must have correct relic density: $\Omega_X \simeq 0.22$.

Weakly Interacting Massive Particles (WIMPs)

Indirect detection of dark matter

AMS-02

CALET

Gamma-ray sky from dark matter

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low sensitivity because of expected small branching ratio

Galaxy Clusters Low background, but low statistics **Isotropic contributions**

Large statistics, but astrophysics, Galactic diffuse background

Example of profile likelihood

- The search for DM from M31 is performed by fixing the annihilation DM channel leaving free to vary the mass and cross section.
- Below I show the results for one simulation.
- With the profile likelihood you can find the best fit and error for the cross section.

Hypothesis testing: SED curvature

Hypothesis testing: TS of a source

4.0

3.5

3.0

2.5

-1.5

1.0

0.5

 $Log L_1 = Log L_{IEM} + Log$ LISO+ LOG LSOURCES+ LOG LTESTSOURCES

$$TS = 2 \cdot (\log \mathcal{L} - \log \mathcal{L})$$

Hypothesis testing: Variability of a source

$$TS_{var} = 2\left[\log \mathcal{L}(\{F_i\}) - \log \mathcal{L}(F_{Const})\right] = 2\sum_i \left[\log \mathcal{L}_i(F_i) - \log \mathcal{L}_i(F_{Const})\right]$$

Hypothesis testing: localization

Summary

MLE provides

- Framework for parameter estimation of a given model
- Covariant errors through inverse of Fisher matrix
- Asymmetric errors through profile likelihood
- Hypothesis testing of of models through Wilks' theorem

Example: χ^2 fit of constant

Data

all measurements are of a constant flux with Gaussian errors

Probabilities
$$P(x_i|F) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(x_i - F)^2}{2\sigma_i^2}}$$
Likelihood Function
$$\ln \mathcal{L}(F) = -\sum \frac{(x_i - F)^2}{2\sigma_i^2} - \sum \ln \sigma_i - \frac{N}{2} \ln 2\pi$$

 (x_i, σ_i)

F

Example: χ^2 fit of constant

• Log likelihood: $\ln \mathcal{L}(F) = -\sum \frac{(x_i - F)^2}{2\sigma_i^2} - \sum \frac{\ln \sigma_i}{2} \frac{N}{2} \ln 2\pi$

F

Maximize for MLE of

$$\frac{\partial \ln \mathcal{L}}{\partial F} = \sum \frac{x_i - F}{\sigma_i^2} = 0 \implies \hat{F} = \frac{\sum x_i / \sigma_i^2}{\sum 1 / \sigma_i^2}$$

• Curvature gives "error" on *F*:

$$\frac{1}{\sigma_F^2} = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial F^2} \right|_{\hat{F}} = \sum \frac{1}{\sigma_i^2} \implies \sigma_F = \frac{1}{\sqrt{\sum 1/\sigma_i^2}}$$