GRBs and Gravitational Waves

Adam Goldstein

Universities Space Research Association at Marshall Space Flight Center AGoldstein@usra.edu

BNS-GRB Association

<u>GW</u>

- In-spiral confirms CBC progenitor model
- Information about binary system parameters
- precise merger time
- standard candle -> luminosity distance

<u>EM</u>

- Detection confidence
- EM energetics
- X-ray or optical afterglow gives precise location
- Breaks degeneracy in binary parameter estimation
- Host galaxy/redshift
- Local environment information

GW170817—GRB 170817A

Gamma rays, 50 to 300 keV

GRB 170817A

Gravitational-wave strain

GW170817

August 17: Timeline of Events (Abridged)

$T_{GW} + 1.7 s$

https://gcn.gsfc.nasa.gov/other/524666471.fermi

TITLE: **GCN/FERMI NOTICE** Thu 17 Aug 17 12:41:20 UT NOTICE DATE: NOTICE_TYPE: Fermi-GBM Alert **RECORD_NUM:** TRIGGER_NUM: 524666471 GRB DATE: 17982 TJD; 229 DOY; 17/08/17 GRB TIME: 45666.47 SOD {12:41:06.47} UT TRIGGER_SIGNIF: 4.8 [sigma] TRIGGER_DUR: 0.256 [sec] E_RANGE: 3-4 [chan] 47-291 [keV] ALGORITHM: 8 **DETECTORS:** 0,1,1,0,0,1,0,0,0,0,0,0,0,0,0, http://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/triggers/2017/bn170817529/quicklook/ LC URL: glg_lc_medres34_bn170817529.gif **COMMENTS:** Fermi-GBM Trigger Alert. **COMMENTS:** This trigger occurred at longitude, latitude = 321.53, 3.90 [deg]. COMMENTS: The LC_URL file will not be created until ~15 min after the trigger.

GBM Trigger - The First Notice

Subject:[gbm+ligo] WAKE UP Date: Thu, 17 Aug 2017 13:23:13 +0000 From:Littenberg, Tyson B. (MSFC-ST12) < To:GBM+LIGO <

ivo://nasa.gsfc.gcn/Fermi#GBM_Gnd_Pos_2017-08-17T12:41:06.47_524666471_57-431

this morning's GBM trigger has a friend....

Automated On-ground Localization

GBM Localization

+40 min

+45 min

More Reporting/Updates

GBM Report on localization and short duration GRB

+67 min

Continued Reporting

TITLE: (NUMBER: 2 SUBJECT: (DATE: 2 FROM: 2	GCN C 21520 GRB 1 17/08 Andrea	IRCULAR 70817A: Fermi GBM dete /17 20:00:07 GMT as von Kienlin at MPE	ction <azk@mpe.mpg< th=""></azk@mpe.mpg<>
of 15 host alaxies in GO/Virgo sl ap volume	ky	GBM science data arrives - GCN Circular giving GRB official name	

+6 hr

+11 hr +12 hr

Electromagnetic Follow-up

Report of Optical Transient by three independent telescopes

+12-13 hr

X-ray counterpart reported by Chandra

Radio counterpart reported by VLA

+9 day

+16 day

GRB 170817A: A Tail

GRB Type: Short or Long?

- Two classes of GRBs: short (mergers) and long (collapsars)
- than many short GRBs

These two classes are also spectrally different: short-hard and long-soft This GRB is most likely classified as short, although it is spectrally softer

Spectra: Average or Peculiar?

- Two components: initial GRB spike & weak
- Tail appears thermal—blackbody kT~10 keV

Energetics? Not Very.

- ightarrowof magnitude lower than previous observations
- Why the large gap? Malmquist bias. ullet
 - weak things far away.

Estimated peak luminosity and isotropic-equivalent energy is ~2-3 orders

We see bright things far away that look weak, bright things nearby that look bright, and weak things nearby that look weak. We can't see

GRB Observing Scenarios

- GW data restricts viewing angle < 56 deg off-axis
- Viewing angle $< 36 \deg$ off-axis (20+/-5 Mooley+ ArXiv:1806.09693)
- Could be a structured jet with "wings" of shocked material (e.g. Lazzati+ 2018)
- Could be a shock breakout from a "choked" trans-relativistic jet (e.g. Gottleib+ 2018)

GRB Emission Models – Shocking

Central Engine

- First direct measurement of a GRB central engine ightarrow
- Typical GRB spike
 - Internal shocks, assuming time delay between GW and GRB is due to propagation time, the radius of the relativistic outflow < 30 au, and the size of emitting region $< \sim 3$ au
 - External shocks, assuming time delay is between GW and GRB is propagation time, Lorentz factor ~300, deceleration radius ~200 au

GRB Emission Models – Shocking

Central Engine

- Soft blackbody tail ullet
 - Photospheric emission can explain this if assume the delay time is the \bullet time required for photosphere to become optically thin -> photospheric radius ~ 1 au
 - Photospheric emission has difficulty in explaining non-thermal spike + \bullet thermal emission
 - Cocoon emission radius ~3000-14000 km, supported by off-axis x-ray observations of trans-relativistic cocoon

A Cool Video

NASA ASTROPHYSICS

Neutron Star Equation of State

- Testing the "flufiness" of neutron star material
- Gamma-ray/X-ray upper limits on post-merger emission indicate that any remnant emission must be 2-3 orders of magnitude weaker
- Assuming remnant is a black hole (and not a stable magnetar), the mass of a non-rotating neutron star < 3.2-3.7 solar mass
- Most massive pulsar: (2.01+/-0.04) solar masses from Antoniadis et al. 2013

A Race Between Gravity and Light: It's a Tie

- Conservative estimate
- Assume distance = 26 Mpc (lower bound GW 90% credible interval)
- Assume GWs and gamma-rays emitted at same time, OR
- Assume gamma-rays emitted 10 s after GWs
- Gravitational waves travel at c to within one part in one quadrillion
- Rules out some Modified Newtonian Dynamics theories

The Equivalence Principle

- Equivalence Principle: Gravitational mass == inertial mass
- Can test using Shapiro delay

$$\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{\mathbf{r}_{\rm e}}^{\mathbf{r}_{\rm o}} U(\mathbf{r}(l)) dl$$

- l = wave path
- y = deviation from Einstein-Maxwell theory

$-1.2 \times 10^{-6} \le \gamma_{\rm GW} - \gamma_{\rm EM} \le 2.6 \times 10^{-7}$

This is 1-2 orders of magnitude lower than the best **absolute** bound on γ_{EM} based Shapiro delay of radio waves

Propagation time of massless particles traveling in curved spacetime (through gravitational fields) will be slightly increased compared to flat spacetime

> $\delta t_{\rm S}$ = Shapiro delay using the same time bounds \mathbf{r}_{o} = observation position, \mathbf{r}_{e} = emission position $U(\mathbf{r}) = \text{gravitational potential (here the Milky Way's)}$

```
(where \gamma_{EM} and \gamma_{GW} are both equal to 1)
```

ApJ Letters Focus Set

THE ASTROPHYSICAL JOURNAL LETTERS

Focus on the Electromagnetic Counterpart of the Neutron Star Binary Merger GW170817

OPEN ACCESS

Multi-messenger Observations of a Binary Neutron Star Merger

B. P. Abbott et al. 2		
View abstract	View article	🔁 PDF

OPEN ACCESS

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott et al. 2017 ApJL 848 L13

+ View abstract ■ View article 🔁 PDF

An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

A. Goldstein et al. 2017 ApJL 848 L14

Fermi Science from GW170817

Many exciting results from ONE observation!

- <u>Relativistic Jet physics</u> emission radius/timescale, deceleration radius/timescale
- <u>Stellar populations</u> rate of NS-NS mergers/short GRBs
- <u>Condensed matter physics</u> Neutron Star Equation of State
- Fundamental physics measurement of the speed of gravity
- <u>General Relativity</u> testing the Equivalence Principle between gravity and EM, and Lorentz Invariance Violation

Joint Sub-threshold Search

Ideal Scenario GRB 170817A!	Bright GBM	Bright LI
GW150914 Scenario Connaughton+ 2016, ApJL 826, L6	Sub-threshold GBM	Bright LI
Typical more distant short GRB	Bright GBM	Sub-thre
Both Sources Faint	Sub-threshold GBM	Sub-thre

- GBM and LIGO teams working together to develop automated pipelines to search for sub-threshold signals
 - Untargeted Search—offline, searches all continuous data, latency ~few hours: <u>https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html</u>
 - Targeted Search—searches window around target of interest, deep detector and spectral coherent search
- Detection of sub-threshold signals can push the GW detection distance deeper
- GW/GRB 170817A inspired formulation of joint detection statistic: Ashton+ 2018, ApJ 860, 6

All-O1 Offline Follow-up Analysis

- 59 LIGO triggers
- ~2500 Background triggers (FAR > 1 per 15 min)
- No above threshold or blind sub-threshold gammaray counterparts

- Search performed over 3 template spectra
- GW150914-GBM candidate is most significant at FAR ~3x10⁻⁴ Hz
- GW150914-GBM has lowest post-trials FAP, too high to declare an unambiguous EM counterpart

Fermi GBM During O3

- Untargeted Search
 - Over 40 confirmed sub-threshold short GRBs
 - Using as a calibration sample for classification
- Targeted Search
 - >10x faster than in O2
 - More sensitive lower background FAR, increased detection statistic
- Reporting of coincident triggers
 - Independent triggers
 - Single IFO GW triggers + GBM signal (realtime)
 - Triggers where either GBM or LIGO/Virgo are sub-threshold (~hours delay)
- Prompt, combined skymaps
- Enable follow-up, interested wide-field telescopes: ZTF, GOTO, EveryScope, MASTER

ZTF-2900 deg² followup!

Coughlin+ 2019

Fermi GBM During O3

Distance Posteriors

Fermi: The Multi-Messenger Observatory

Backup

A Cautionary Tale on SAA Boundaries

29

GRBs Similar to 170817A

- Similar -> short and has a similar soft (blackbody?) tail
- 12 GRBs similar to 170817A (including 150101B) over 10 years
- Short GRBs ranging in duration from ~0.1 to ~3 s
- Tail not part of natural hard-to-soft spectral evolution observed in many GRBs
- Could be signatures of low-z binary neutron star mergers
- Most short GRBs do not have this observed tail, far away ->too weak to be observed?
- Only 170817A and 150101B have measured redshift

Will We Ever See Another One?

- **O3 Predicted Rates**
 - GW detections of BNS: 1-50/year
 - GW-GRB detections: 0.1-1.4/year \bullet
- LIGO/Virgo Design
 - GW detections of BNS: 6-120/year ullet
 - GW-GRB detections: 0.3-1.7/year ullet

10