Edison Murairi New York University Abu Dhabi Class of 2020

Supervisor: Jospeh Gelfand

Cosmic Ray Production/Acceleration in SNR

Edison is

- Music Enthusiast
- Amateur Programmer
- Retired Frisbee Player

New York University Abu Dhabi

Figure 1: Alan A Watson, Catching the highest energy cosmic rays, Astronomy Geo-physics50(2009), no. 2, 2.20–2.27

Supernova Remnants?

Shock waves

 $\label{eq:explosion} \square \text{Extremely energetic explosions:} E \sim 10^{51} \text{ergs}$

□Frequent: 2 - 3 SN every ~ 100 years

Requirement:

If mainly supernova remnants produce CR, $\eta_{cr} = 10\%$

Figure 3: Tycho's Supernova Remnant. Chandra : Spacecraft. http://chandra.harvard.edu/photo/2016/tycho/. Accessed 25 November 2018

CR acceleration efficiency of SNRs

Figure 4: Caprioli Spitkovsky 2014, ApJ, 783, 91

New York University Abu Dhabi

Case 1: Tycho

Type Ia SNR

Shell-like Morphology

Chandra: Non-Thermal emission shows evidence of CR acceleration

Does it satiType equation here.sfy the requirement?

If γ ray produced:

□ In Molecular cloud (Blue)

□ In Clumpy ISM (Red): 1% efficiency

□ In Homogenous ISM: 12% efficiency (Wohaaaa)

Annnnnd

Not Enough Statistics

New York University Abu Dhabi

What to dothen?

□ Keep on collecting SNR and study their properties

SNR	Age	ñ.	ISM	B _{snr}	$\eta_{\rm cr}$	K _{ep}	$E_{0,p}$
Cas A	330 vr	30 cm^{-3}	Clumpy	0.5_1 mG	0.005_0.02	0.004_0.02	10_30 TeV
Tycho	440 yr	~0.3 cm ⁻³	Uniform	200–300 μG	0.06-0.075	0.0016	>470 TeV
IC 443	4,000 yr	$\sim \! 250 \text{ cm}^{-3}$	Clumpy	10 µG	0.006-0.02	0.01-0.03	100-200 GeV
W44	20,000 yr	$\sim 100 \text{ cm}^{-3}$	Clumpy	$40-800 \mu G$	0.03-0.15	0.01-0.05	
W51C	30,000 yr	10 cm ⁻³	Clumpy	$<150 \mu G$	0.16	0.0125	120 TeV
W28	40,000 yr	$\gtrsim 100 \ {\rm cm}^{-3}$	Clumpy	$40-160 \ \mu G$	0.01-0.03	0.01	

https://iopscience.iop.org/article/10.1088/0004-637X/777/2/148/meta

New York University Abu Dhabi