

COSI in a Nutshell

Balloon-borne compact Compton telescope

- > Energy range: 0.2 5 MeV
- > Spectral resolution: ~2.9 keV from HPGe crystals
- (~0.4% at 662 keV)
 - > Angular resolution: <= 4° at 662 keV
 - > FOV: 25% of the sky

Science goals

- > Map the 511-keV electron-positron annihilation line
- > Image emission of nuclear lines (²⁶AI, ⁶⁰Fe, etc.)
- > γ-ray polarization of compact objects and GRBs

What is a compact Compton telescope?

Principle: Compton scattering dominates the 0.2-10 MeV energy range

> Find most likely order of interactions \rightarrow most probable γ path

> Constrain γ to event circle defined by θ :

$$E' = \frac{E_0}{1 + \frac{E_0}{m_e c^2} (1 - \cos\theta)}$$

> Klein-Nishina differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \left(\frac{E'}{E_0}\right)^2 \left(\frac{E'}{E_0} + \frac{E_0}{E'} - 2\sin^2\theta\cos^2\eta\right)$$

Azimuthal scatter angle between photon's E-field and scatter direction \rightarrow sensitive to polarization!

COSI's GeD Array

12 HPGe cross-strip detectors

12 x 37 strips x 2 sides = 888 strips of pitch of 2 mm \rightarrow 3D positioning with 2 mm³ resolution

Readout through Kapton flex circuits and preamplifiers

Detectors housed in aluminum cryostat

Operating conditions: ~84 K, 10⁻⁶ Torr (~0.7 eV bandgap)

Also, a few other components...

SPACE SCIENCES LABORATORI Berkeley

Kierans, C. A. 2018, PhD thesis, University of California, Berkeley

COSI 2016 Wanaka Flight

46 days later, COSI lands in Peru, completing the longest mid-latitude flight for a large balloon

May 30, 2016: First balloon to circulate a real-time GRB detection with Gamma-ray Coordination Network (GCN): **GRB 160530A**

COSI detects the Crab nebula (top) and Cyg X-1 (bottom)

> COSI detects 511-keV e⁺-e⁻ annihilation (left) and Centaurus A (right)

Kierans, C. A. 2018, PhD thesis, University of California, Berkeley

May 17, 2016: COSI launch is the first mid-latitude science flight with NASA's Super Pressure Balloon (SPB) technology

COSI-2 2020 Wanaka Flight

SPACE SCIENCES LABORATORY Berkeley

Hardware repairs: Fixed 3 detectors that failed during 2016, replaced 2 faulty HV filters, repair card cage analog readout boards, etc.

> Perform energy, polarization, depth, and crosstalk calibrations with improved structures.

Looking forward to a longer flight, more data, and advanced analysis incorporating new machine learning techniques.

Stay tuned!

My work

- Energy, depth, and crosstalk calibration
- Cold leak testing of the cryostat
- Testing of detectors post-repair
- Simulations of charge transport through semiconductor detectors
- Probing next-generation ASIC readout for future satellite missions
- General preparations for COSI-2 and data analysis

