

Updating HPS

Readout

Readout Framework Revisited

 1

Introduction
 The current HPS readout framework is not ideal.

Readout Framework Revisited

 2

Introduction
 The current HPS readout framework is not ideal.

o We use an event loop system, but employ drivers that depend on data

across many events.

Readout Framework Revisited

 3

Introduction
 The current HPS readout framework is not ideal.

o We use an event loop system, but employ drivers that depend on data

across many events.

o The current framework was designed for the old 2014 readout system,

and is not an intuitive, natural structure for the current readout

system.

Readout Framework Revisited

 4

Introduction
 The current HPS readout framework is not ideal.

o We use an event loop system, but employ drivers that depend on data

across many events.

o The current framework was designed for the old 2014 readout system,

and is not an intuitive, natural structure for the current readout

system.

o The current system is very awkward for developing any driver that

depends on more than one system.

Readout Framework Revisited

 5

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

Readout Framework Revisited

 6

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

 A readout driver performs several functions:

Readout Framework Revisited

 7

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

 A readout driver performs several functions:

o Declares a “local time offset” – the amount of time between the time

an object is produced versus its real time.

 For instance, clusters are offset by an amount of time equal to

half the clustering time window. Thus, a cluster with a seed hit

with time 𝑡 = 𝑥 ns will actually be produced at time 𝑡 =

(𝑥 + 𝑡window) ns.

Readout Framework Revisited

 8

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

 A readout driver performs several functions:

o Declares a “local time offset” – the amount of time between the time

an object is produced versus its real time.

o Declares which collections upon which it depends.

 This allows the management driver to know the total time offset

of the driver’s output.

 For instance, clustering depends on calorimeter hits. If

calorimeter hits have an offset of 𝑡hits, then the total offset for

clusters is 𝑡hits + 𝑡window.

Readout Framework Revisited

 9

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

 A readout driver performs several functions:

o Declares a “local time offset” – the amount of time between the time

an object is produced versus its real time.

o Declares which collections upon which it depends.

o Declares which collections (and their object types) that it produces.

 This allows the management driver to know which collections to

track and what the time offsets on them will be.

Readout Framework Revisited

 10

Proposal Framework
 Consider a new framework consisting of “readout drivers” which all

connect to a central “data management module.”

 A readout driver performs several functions:

o Declares a “local time offset” – the amount of time between the time

an object is produced versus its real time.

o Declares which collections upon which it depends.

o Declares which collections (and their object types) that it produces.

o Creates readout objects and passes them to the data management

driver.

 Readout drivers will request the data they need in a certain time

range from the management driver.

 Drivers may further output their data as appropriate to the

management driver for use by other readout drivers.

Readout Framework Revisited

 11

Proposal Framework
 This solves a number issues:

Readout Framework Revisited

 12

Proposal Framework
 This solves a number issues:

o Removes the need for drivers to each separately buffer data.

 All data is buffered in the management module.

 Drivers get a list of a needed collection in a defined time range.

 Drivers do not directly depend on the somewhat unnatural (for

this usage case) event structure directly.

Readout Framework Revisited

 13

Proposal Framework
 This solves a number issues:

o Removes the need for drivers to each separately buffer data.

o Removes awkward code structure.

 The current code structure makes sense for the 2014 trigger

system, but is not natural and difficult to follow in the present

system.

 New version is much more straightforward, and provides a

simpler framework for development.

 Improves code readability and maintainability going forward.

Readout Framework Revisited

 14

Proposal Framework
 This solves a number issues:

o Removes the need for drivers to each separately buffer data.

o Removes awkward code structure.

o Removes need for drivers to know about other drivers.

 The management module knows the time offsets of all collections,

so individual drivers only need to poll it to see if a collection is

available in a given time range.

 This allows drivers to be truly independent of each other, and to

be modified without affecting other drivers. A driver need only be

responsible for declaring its own behavior.

Readout Framework Revisited

 15

Proposal Framework
 This solves a number issues:

o Removes the need for drivers to each separately buffer data.

o Removes awkward code structure.

o Removes need for drivers to know about other drivers.

o Modifying collection output is simplified.

 The current readout driver is quite convoluted.

 The management module can be designed with more

straightforward output behavior to simply the addition of new

collections to readout, like hodoscope hits, GTP clusters, or truth

information.

Readout Framework Revisited

 16

Conclusion
 The current readout system is poorly documented and not well suited to

the modern readout structure.

o This induces issues with modifying readout output to include new

systems, like the hodoscope, or new components, like truth

information.

o It also induces problems with linking multiple systems with different

time offsets together.

 A modified, streamlined, and centralized system can alleviate the

structural problems and remove the time offset issue.

o A central management module can learn and account for time offsets

for each driver without each driver needing to know these itself.

o Much of the convolution comes from legacy 2014 behavior support,

which can be safely removed for a more structurally appropriate

system now.

