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Introduction 
 The current HPS readout framework is not ideal. 

o We use an event loop system, but employ drivers that depend on data 

across many events. 

 

o The current framework was designed for the old 2014 readout system, 

and is not an intuitive, natural structure for the current readout 

system. 
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Introduction 
 The current HPS readout framework is not ideal. 

o We use an event loop system, but employ drivers that depend on data 

across many events. 

 

o The current framework was designed for the old 2014 readout system, 

and is not an intuitive, natural structure for the current readout 

system. 

 

o The current system is very awkward for developing any driver that 

depends on more than one system. 
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Proposal Framework 
 Consider a new framework consisting of “readout drivers” which all 

connect to a central “data management module.” 
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Proposal Framework 
 Consider a new framework consisting of “readout drivers” which all 

connect to a central “data management module.” 

 A readout driver performs several functions: 

o Declares a “local time offset” – the amount of time between the time 

an object is produced versus its real time. 

 For instance, clusters are offset by an amount of time equal to 

half the clustering time window. Thus, a cluster with a seed hit 

with time 𝑡 = 𝑥 ns will actually be produced at time 𝑡 =

(𝑥 + 𝑡window) ns. 
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Proposal Framework 
 Consider a new framework consisting of “readout drivers” which all 

connect to a central “data management module.” 

 A readout driver performs several functions: 

o Declares a “local time offset” – the amount of time between the time 

an object is produced versus its real time. 

o Declares which collections upon which it depends. 

 This allows the management driver to know the total time offset 

of the driver’s output. 

 For instance, clustering depends on calorimeter hits. If 

calorimeter hits have an offset of 𝑡hits, then the total offset for 

clusters is 𝑡hits + 𝑡window. 
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Proposal Framework 
 Consider a new framework consisting of “readout drivers” which all 

connect to a central “data management module.” 

 A readout driver performs several functions: 

o Declares a “local time offset” – the amount of time between the time 

an object is produced versus its real time. 

o Declares which collections upon which it depends. 

o Declares which collections (and their object types) that it produces.  

 This allows the management driver to know which collections to 

track and what the time offsets on them will be. 
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Proposal Framework 
 Consider a new framework consisting of “readout drivers” which all 

connect to a central “data management module.” 

 A readout driver performs several functions: 

o Declares a “local time offset” – the amount of time between the time 

an object is produced versus its real time. 

o Declares which collections upon which it depends. 

o Declares which collections (and their object types) that it produces. 

o Creates readout objects and passes them to the data management 

driver. 

 Readout drivers will request the data they need in a certain time 

range from the management driver. 

 Drivers may further output their data as appropriate to the 

management driver for use by other readout drivers. 
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Proposal Framework 
 This solves a number issues: 
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Proposal Framework 
 This solves a number issues: 

o Removes the need for drivers to each separately buffer data. 

 All data is buffered in the management module. 

 Drivers get a list of a needed collection in a defined time range. 

 Drivers do not directly depend on the somewhat unnatural (for 

this usage case) event structure directly. 
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Proposal Framework 
 This solves a number issues: 

o Removes the need for drivers to each separately buffer data. 

o Removes awkward code structure. 

 The current code structure makes sense for the 2014 trigger 

system, but is not natural and difficult to follow in the present 

system. 

 New version is much more straightforward, and provides a 

simpler framework for development. 

 Improves code readability and maintainability going forward. 
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Proposal Framework 
 This solves a number issues: 

o Removes the need for drivers to each separately buffer data. 

o Removes awkward code structure. 

o Removes need for drivers to know about other drivers. 

 The management module knows the time offsets of all collections, 

so individual drivers only need to poll it to see if a collection is 

available in a given time range. 

 This allows drivers to be truly independent of each other, and to 

be modified without affecting other drivers. A driver need only be 

responsible for declaring its own behavior. 
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Proposal Framework 
 This solves a number issues: 

o Removes the need for drivers to each separately buffer data. 

o Removes awkward code structure. 

o Removes need for drivers to know about other drivers. 

o Modifying collection output is simplified. 

 The current readout driver is quite convoluted. 

 The management module can be designed with more 

straightforward output behavior to simply the addition of new 

collections to readout, like hodoscope hits, GTP clusters, or truth 

information. 
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Conclusion 
 The current readout system is poorly documented and not well suited to 

the modern readout structure. 

o This induces issues with modifying readout output to include new 

systems, like the hodoscope, or new components, like truth 

information. 

o It also induces problems with linking multiple systems with different 

time offsets together. 

 A modified, streamlined, and centralized system can alleviate the 

structural problems and remove the time offset issue. 

o A central management module can learn and account for time offsets 

for each driver without each driver needing to know these itself. 

o Much of the convolution comes from legacy 2014 behavior support, 

which can be safely removed for a more structurally appropriate 

system now. 


