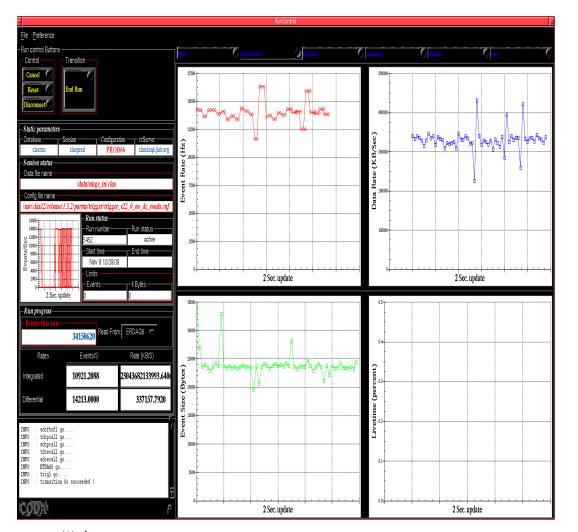
DAQ and Trigger for HPS run

Sergey Boyarinov JLAB January 18, 2019

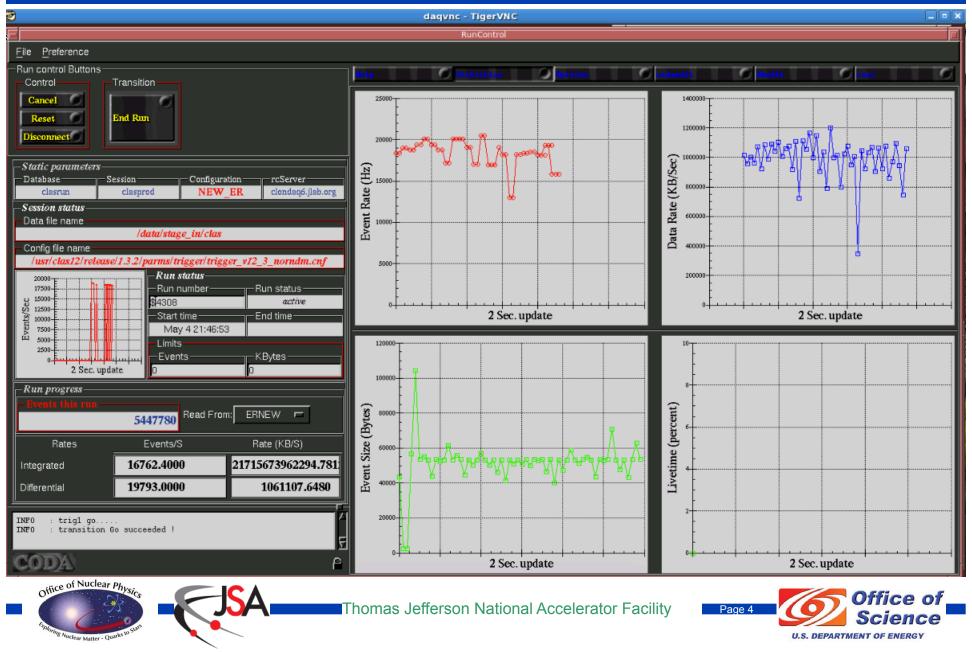
HPS DAQ & Trigger Requirements


20kHz event rate 100MB/s data rate >95% livetime

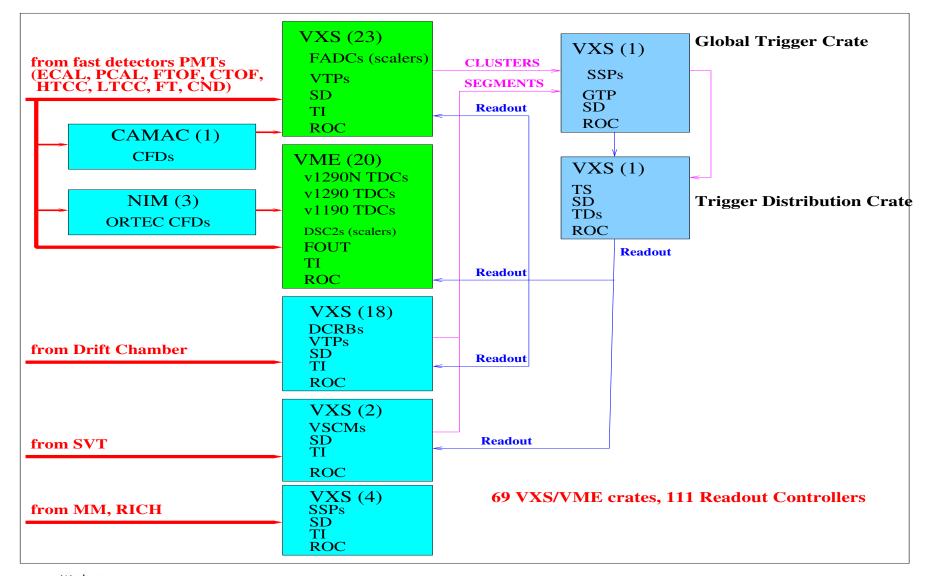
> HPS experiment will be using CLAS12 DAQ & Trigger Facility at JLAB; achieved CLAS12 performance: 20kHz event rate 600MB/s data rate >95% livetime

Typical CLAS12 DAQ performance: 40nA beam – 14kHz, 330MB/s, 95% livetime

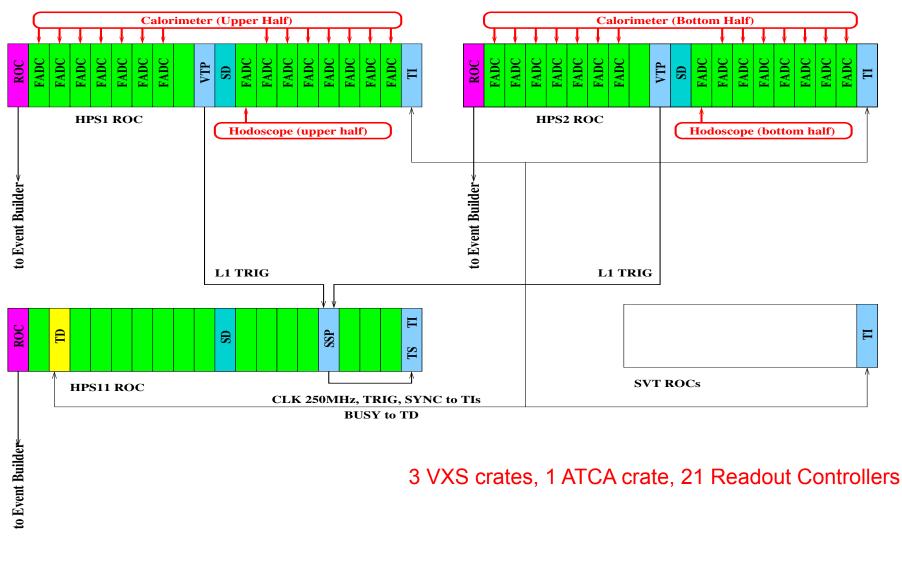
CS-Studio 🛛								
💒 CL	AS12 Trigger Bits 🛿 🔛 CL4	AS12 Trigger Alarn	ns					
Menu CLAS12 VTP Trigger 11/09/2018 11:29:28								
В		on Alarms		Liveti	me			
	40.2 2C21 1-6	NO_ALARM	1-6 Tolerance:	^{0.40} TS	95.4 % 🔵			
	39.3 FCup	Totals (Hz) 1917652	15592	Pulser	93.9 %			
Bit	Description	Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	In Totals		
0	Electron - OR of 1-6	7593	7593.1	48.70				
1	Sector 1	1148	1148.4					
2	Sector 2	1202	1202.3					
3	Sector 3	1330	1330.1					
4	Sector 4	1336	1336.1					
5	Sector 5	1348	1348.1					
6	Sector 6	1266	1266.2					
7	Elctron OR no DC >300Me∨	8102	245.5	1.57				
8	PCALxECAL>10Me∨	244643	119.4	0.77	12			
13	DCxFT0FxPCUxPCAL S1	57001	3.5	0.02				
14	DCxFT0FxPCUxPCAL S2	55134	3.4	0.02				
15	DCxFT0FxPCUxPCAL S3	57096	3.5	0.02				
16	DCxFT0FxPCUxPCAL S4	56517	3.4	0.02				
17	DCxFT0FxPCUxPCAL S5	56810	3.5	0.02				
18	DCxFTOFxPCUxPCAL S6	56540	3.5	0.02				
19	FTOFxPCALxECAL 1-4	818	817.8	5.25				
20	FTOFxPCALxECAL 2-5	714	714.0	4.58				
21	FTOFxPCALxECAL 3-6	740	739.9	4.75				
24	FTxHDxFTOFxPCALxCTOF	10855	329.0	2.11				
25	FTxHDx(FTOFxPCAL)^2	4337	4336.8	27.81				
26	FT 2 clusters	4911	148.8	0.95				
27	FT > 100 Me∨	1175206	71.7	0.46				
31	Pulser	100	99.9	0.64				

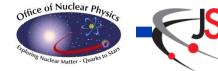

* Note, red warning status indiciators above are to aid diagnostics and log information when there is a persistent DAQ/Trigger alarm. If there are no active DAQ/Trigger alarms, these red indicators can be disregarded.

Office of Nuclear Physics



CLAS12 50nA beam DAQ test (some prescales removed) – 20kHz, 1000MB/s, 88% livetime


CLAS12 DAQ & Trigger Diagram

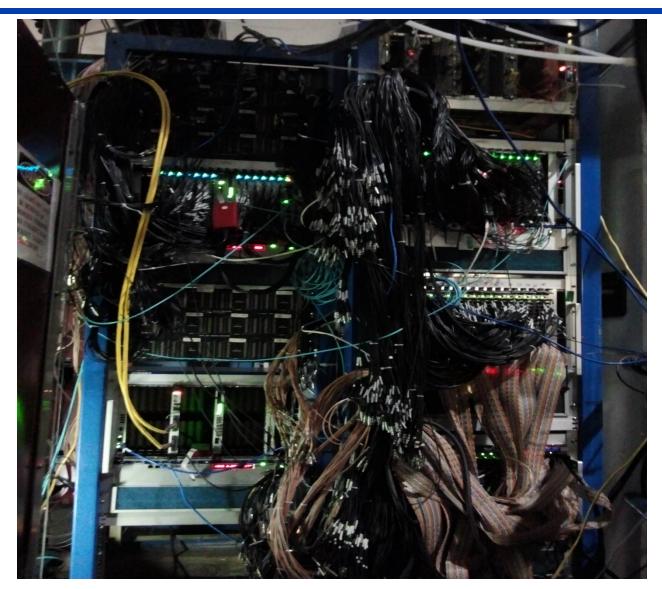


Office of Nuclear Physics

HPS DAQ & Trigger Diagram

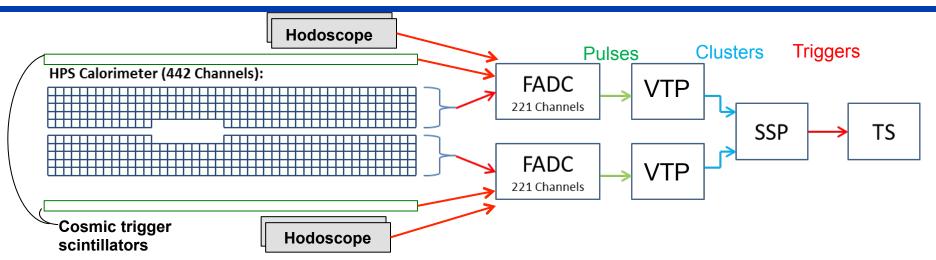
HPS DAQ Status

All front-end electronics installed:


- Calorimeter Readout: 442 channels of 12bit 250MHz Flash ADCs
- Hodoscope Readout: 32 channels of 12bit 250MHz Flash ADCs (in hodoscope test setup)
- CPU/VTP/TS/TD trigger and signal distribution boards
- 3 VXS crates

Back-end computing and software is ready as part of CLAS12 facility: network, computing, DAQ software, data monitoring, messaging system, realtime database etc

DAQ & Trigger System View



ECAL Trigger Overview

FADC (Flash Analog-to-Digital Converter)

• 250Msps, 12bit pulse digitizer for: Readout & Trigger (energy, timing)

VTP (VXS Trigger Processor)

- Collects pulse data from all FADC channels in crate
- Searches for clusters on half (top or bottom) of the ECAL
- Positron side clusters are tagged with hodoscope (using a hodoscope -> cluster map)
- Sends cluster energy, time, position, hit count, hodoscope tag to SSP for trigger processing

SSP (Sub-System Processor)

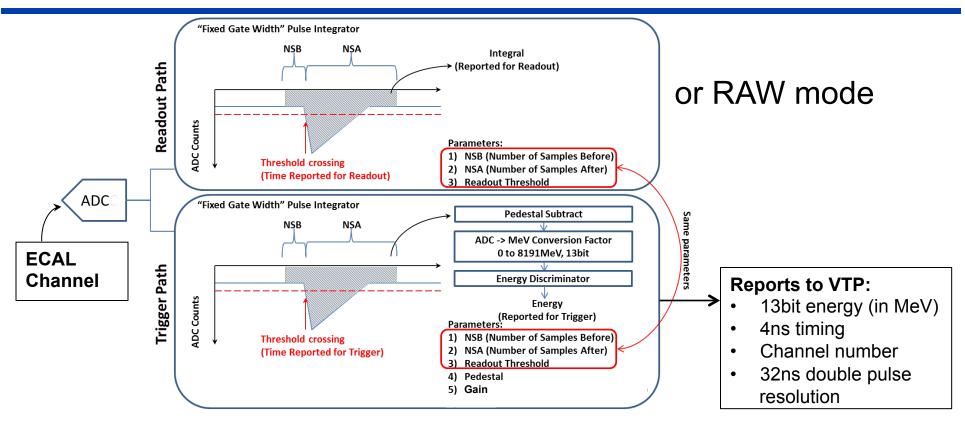
- Collects clusters from top & bottom halves of ECAL from VTP
- Performs cuts on individual clusters: energy (position dependent), hit count, hodoscope tag
- Performs cuts on paired clusters: energy sum/difference, coplanar, distance-energy
- Delivers trigger signals to TS (Trigger Supervisor) for readout

Trigger Module Status

FADC Status

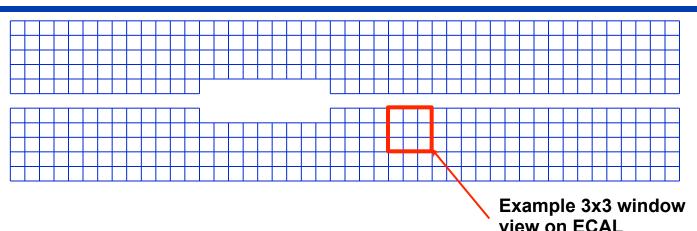
- Firmware: complete and tested
- Hardware: all installed, spares available

VTP Status


- Firmware: clustering complete and tested, hodoscope tagging logic is needed
- Hardware: installed, 1 spare unit
- Plans: expected firmware updates/testing: ~2 weeks needed

SSP Status

- Firmware: cluster triggers complete and tested, hodoscope trigger option is needed
- Hardware: all installed, spares available
- Plans: expected firmware updates/testing: ~2 weeks needed


FADC – Pulse Processing

- Trigger pedestal is the same parameter that would be calculated for the readout data.
- Trigger gain parameter sets energy units in MeV so VTP and SSP trigger parameters work in these units as well.
- Both pedestal and gain require calibration to determine parameters.

VTP – Cluster Processing

1. Search for ECAL hits ≥threshold that is a local maximum (in 3x3 window and in cluster coincidence time Δt)

- 2. Sum 3x3 window of hits within Δt of hit from step 1
- 3. Identify 3x3 window hit pattern
- 4. Report cluster to SSP defined as:
 - cluster center (defined by step 1)
 - 3x3 window energy sum (defined by step 2)
 - 3x3 hit pattern (count defined by step 3)
 - 4ns resolution timestamp
 - Hodoscope tag (hodoscope hit matches space & time coincidence)

office of Nuclear Physics

SSP Event Information (to datastream for efficiency measurement)

Structure Element Size (bytes)		Element Information	SSP will create event data containing all found clusters.		
Block Header	4	Block Number: 11bits VME Slot: 5bits EventsPerBlock: 11bits	Programmable time window:		
Event Header	4	Event number: 27bits	 "trigger look-back" 		
Trigger Timestamp	8Timestamp: 48bits (~13 day rollover)8Cluster Center X: 6bits Cluster Center Y: 4bits Cluster Energy: 13bits Cluster Nhits: 4bits Cluster Time: 10bits Hodoscope Tag: 2bits		 "window width" Clusters are tagged with trigger decision results (pass/fail): HPS physics cuts 		
ECal Cluster					
Trigger (per trigger bit and per time stamp)	4	Trigger time: 10bits Trigger tags: 6bits Trigger type: 4bits	CosmicRandom		
ECal Cluster	8		• etc		
 Event Header 4			Trigger tags are used for		
			efficiency measurements.		
Trigger Timestamp	r Timestamp 8		Tags and clusters can be used to understand reason for		
ECal Cluster 8					
Block Trailer	4	Block Word Count: 22bits VME Slot: 5bits	inefficiency.		

TS Trigger Inputs

Up to 32 inputs are available:

- 1. SSP "singles #0" (top) EC cluster tagged by hodoscope (HPS Physics)
- 2. SSP "singles #1" (bot) EC cluster tagged by hodoscope (HPS Physics)
- 3. SSP "singles #2" (top) EC cluster tagged by hodoscope (Calibration)
- 4. SSP "singles #3" (bot) EC cluster tagged by hodoscope (Calibration)
- 5. SSP "singles #4" EC cluster (Calibration)
- 6. SSP "singles #5" EC cluster (Calibration)
- 7. SSP "pairs #0" EC cluster pair (Calibration)
- 8. SSP "pairs #1" EC cluster pair (Calibration)
- 9. SSP "triplet #0" EC cluster triplet (Calibration)
- 10. SSP Ecal scintillator 'vertical' coincidence (Cosmic)
- 11. Pulser (Random)

Pairs of identical triggers have different thresholds or timing or geometry etc Prescalers (inside TS) for each trigger input:

• programmable from 1 to 32,768 (in powers of 2)

HPS Trigger Bit Definitions

"Singles" Cluster Trigger equation:

(E_{min}(X,Y) <= E <= E_{max}(X,Y)) and (NHits >= NHits_{min}) and (NHodoLayersHit >= NHodoLayersHit_{min})

"Pairs" Cluster Trigger equation:

$$\begin{split} (|\mathsf{T}_{\mathsf{Top}} - \mathsf{T}_{\mathsf{Bot}}| &\leq \Delta t_{\mathsf{max}}) \text{ and} \\ (|\mathsf{E}_{\mathsf{Top}} - \mathsf{E}_{\mathsf{Bot}}| &\leq \Delta \mathsf{E}_{\mathsf{max}}) \text{ and} \\ (\mathsf{E}_{\mathsf{Top}} + \mathsf{E}_{\mathsf{Bot}} &\leq \mathsf{E}_{\mathsf{max}}) \text{ and} \\ (\mathsf{E}_{\mathsf{min}} &\leq \mathsf{E}_{\mathsf{Bot}} &\leq \mathsf{E}_{\mathsf{max}}) \text{ and} (\mathsf{E}_{\mathsf{min}} &\leq \mathsf{E}_{\mathsf{Top}} &\leq \mathsf{E}_{\mathsf{max}}) \text{ and} \\ (\mathsf{Nhits} &\leq \mathsf{HitThreshold}) \text{ and} \\ (\mathsf{NHodoLayersHit} \geq \mathsf{NHodoLayersHit}_{\mathsf{min}}) \text{ and} \\ (\mathsf{Min}(\mathsf{E}_{\mathsf{Top}}, \mathsf{E}_{\mathsf{Bot}}) + \mathsf{R} \times \mathsf{F} &\leq \mathsf{Threshold}_{\mathsf{Slope}}) \text{ and} \\ (|\mathsf{tan}^{-1}(\mathsf{X}_{\mathsf{top}}/\mathsf{Y}_{\mathsf{top}}) - \mathsf{tan}^{-1}(\mathsf{X}_{\mathsf{bot}}/\mathsf{Y}_{\mathsf{bot}})| &\leq \mathsf{Coplanarity}_{\mathsf{Angle}}) \end{split}$$

Cosmic trigger equation:

(|ScintillatorHitTime_{Top} – ScintillatorHitTime_{Bot}| <= Δt_{max})

[Position dependent Energy range] [Minimum number of hits in cluster] [Minimum number of hodoscope layers]

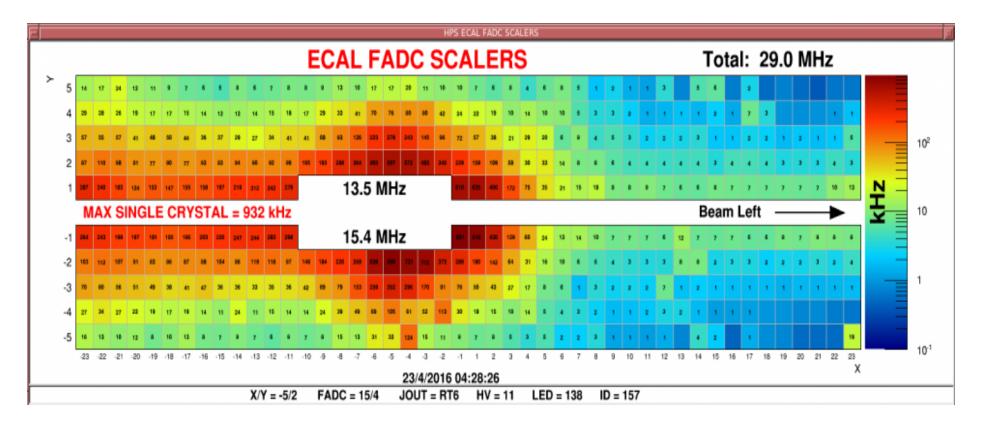
[Pair cluster time coincidence]
[Pair energy difference]
[Pair energy sum]
[Energy range]
[Minimum number of hits in cluster]
[Minimum number of hodoscope layers]
[Energy distance cut]
[Pair coplanarity cut]

[Scinillator time coincidence]

Note:

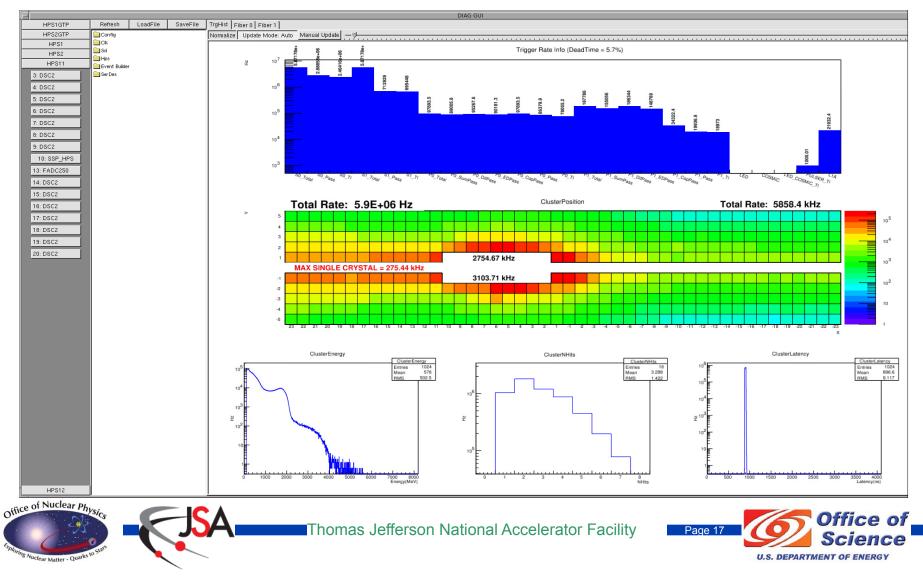
• Currently 2 independent "singles" and 2 independent "pairs" trigger are available for use. It will be more triggers to support additional singles given the addition of the hodoscope.

Color legend:


Trigger data from detector VME programmable parameter Hardcoded parameter/logic

Monitoring examples

- ECAL FADC channel scalers
- Similar monitoring will be provided for hodoscope



Monitoring examples

- Trigger bits and term cut rates
- Trigger cluster positions, energy, number of hits

Conclusion

All trigger & DAQ hardware is installed

Trigger system successfully used during the 2015-2016 runs; diagnostic trigger tagging data demonstrated >99% efficiency for cluster reconstruction and physics triggers

For upcoming run, firmware updates are relatively small and will take a few weeks to finish; plan to do this during March/April 2019

Integration with SVT DAQ was complete for 2015-2016 run, need to be updated to be consistent with recent changes on both subsystems, mostly on SVT side

HPS DAQ & Trigger System will be completely ready by May 1, 2019

