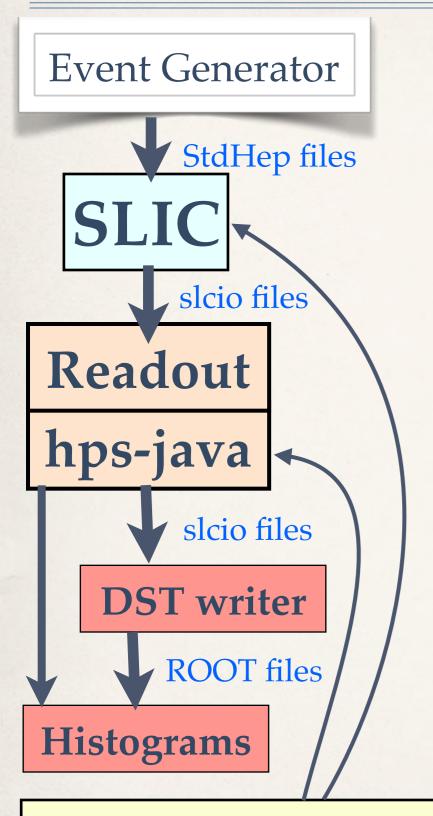


HPS Software

Presentation for DOE Review at SLAC

Overview

- Introduction
 - History
 - System Overview
 - Software Organization Overview
 - Software Group
- Outstanding Task List
- Historic and projected manpower
- System resource utilization
- Conclusions


Introduction - history

- * Early decision by collaboration to leverage the existing expertise in the SLAC group with the Linear Collider Simulation, LCSim software framework.
 - ❖ JLab (CLAS12) software was too immature, and would not suffice for expected 6-GeV era run.
 - Not enough time and manpower to start from scratch.

* Result:

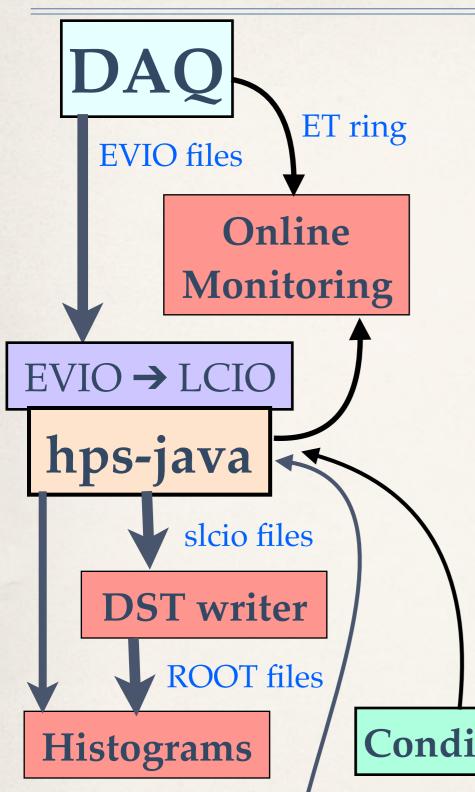
- Development of "hps-java" code, which utilizes the "lcsim" framework.
 - +/- Main code development is in Java.
 - + Robust framework to develop on.
 - + Existing tracking component: seed tracker.
 - No overlap with JLab code.
- Main data storage model: LCIO.
 - + Read/write capabilities from Java and C++.
 - Less flexibility in contents.

Introduction - System Overview: MC

A' events, Background events

SLIC or hps-sim : Main GEANT4 based simulation.

Readout: Simulates electronics and trigger.


hps-java: Analysis framework: SVT, ECAL, Tracking, Hodoscope

dst-maker or hpstr - reads slcio files and produces data summary files.

Geometry description

Part of org.lcsim that computes geometries.

Introduction - System Overview: Data

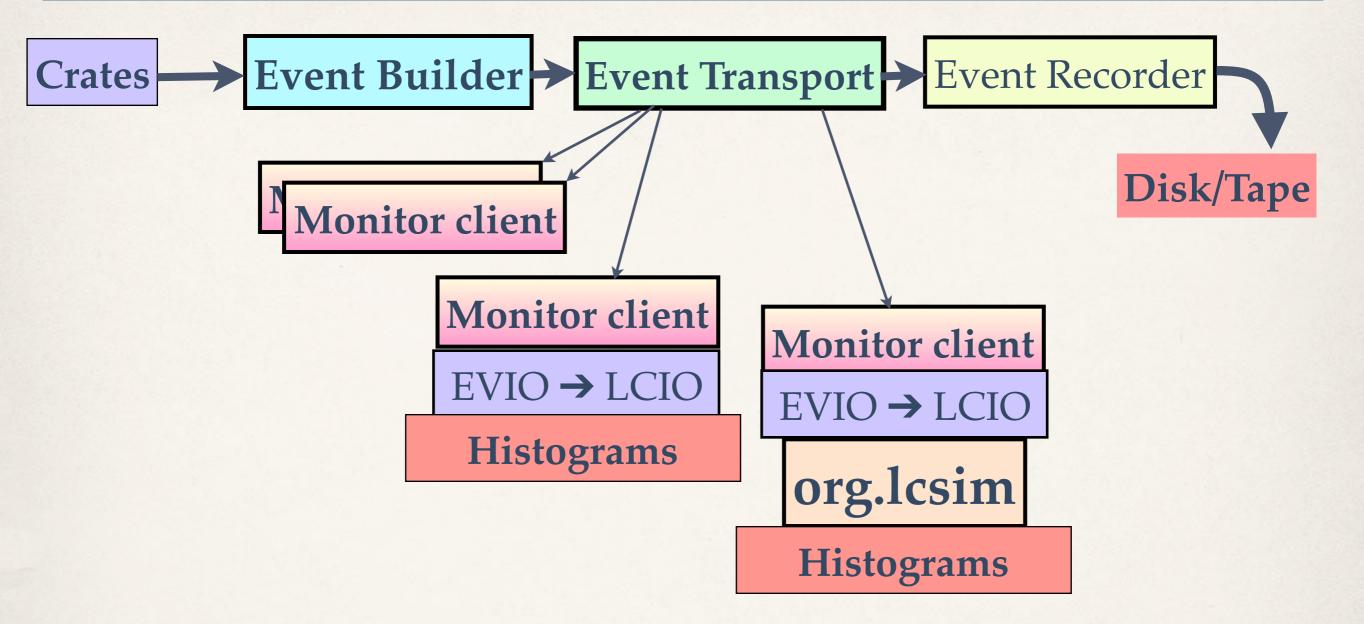
Data Acquisition System

Online monitoring system Histograms and Event display.

Data translation layer.

hps-java: Analysis framework: SVT, ECAL, Tracking, Hodoscope

dst-maker or hpstr - reads slcio files and produces data summary files.


Conditions DB

Stores run by run information.

Geometry description

Part of org.lcsim that computes geometries.

Introduction - System Overview: Online

DAQ uses the EVIO format internally and for data storage of raw data. Event transport distributes and transports events.

Monitoring clients use EVIO or the EVIO → LCIO translation layer.

Introduction - System Overview

Calibrations:

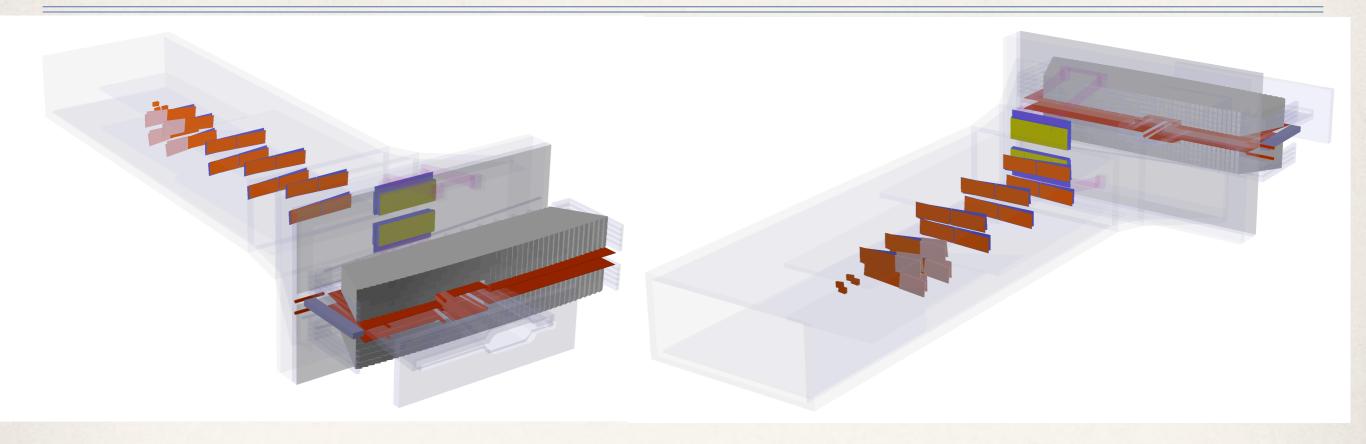
- SVT online calibration code timing in, pedestals, gains.
 - Existing code that runs during commissioning to time in and check SVT.
- * ECal calibration Cosmic ray calibration, Full Energy Electron calibration.
 - Existing code to calibrate ECal, pedestals and gains.
- Hodoscope calibration
 - * Code needs to be written, but can borrow from ECal code.
- Detector Alignment Millipede II
 - Complicated procedure for getting a good alignment.
 - High on Tracking Group priority list to simplify and improve this procedure.

Physics Analysis Code:

- * Runs after data reconstruction.
- Was in the domain of individual analyzers, but is now becoming more centralized.
- See presentation by Nathan Baltzell.

Introduction - Software Organization

- Code repository GitHub
 - Tracks code, allows development on branches
 - Merging only through "pull requests", which must be approved.
- Issue Tracking GitHub
 - Couples code issues with branches.
- Code Documentation Confluence Wiki + Java Doc
- Build System Maven
- Testing Maven integration tests.
- Continuous integration testing Jenkins / Hudson
- Code profiles JProfiler
- Releases: Github + Maven + Nexus.
 - Release is tagged on GitHub.
 - Resulting JAR file is available for download from Nexus.


Introduction - Software Group

- * Bi- Weekly meetings with online presentations.
- Software group mailing list
- * SLACK for more immediate communication.
- Lead: Maurik Holtrop
 - Tracking lead: Norman Graf
 - MC Generators: Takashi Maruyama
 - MC data production: Bradley Yale
 - Trigger: Valeri Kubarovsky
 - Trigger code: Kyle McCarty
 - Data Processing: Rafayel Paremuzyan
 - Analysis software: Matt Graham, Nathan Baltzell
 - Specific codes:
 - DST code: Omar Moreno
 - MC Simulation code, conditions system: Jeremy McCormick

Monte Carlo Generators

- * The MC physics generators simulate the beam interaction with the target. HPS Expert: Takashi Maruyama.
 - * HPS is sensitive to the tails of some distributions which are not fully represented in the GEANT4 simulation, so other tools are required:
 - * EGS5 Electro-Magnetic (EM) interactions.
 - GEANT4 EM, hadronic and neutron production.
 - MadGraph/MadEvent Trident (background) production and A' (signal) production, Wide Angle Bremsstrahlung (WAB) production.
 - * The output of these various generators are combined according to cross section into a pulse train of "2 ns events", which represent a small period of real-time. These "2 ns events" are then run through the detector simulation.
 - Many of these "2 ns events" are empty!
 - * After the detector simulation, the "2 ns events" are combined, and in the readout step, a trigger is searched for similar to the hardware trigger.
 - Events for which a trigger is found are further analyzed.
 - Generated events are biased so that the probability of finding a trigger is much larger than a random actual beam time period.

Monte Carlo Detector Model

- * The detector is accurately simulated using the GEANT4 framework.
- * All active components are accurately rendered.
- Most of the inactive components that could interact with particles are accurately rendered.

Tracking

Alignment

Monitoring

Resource use, CPU

- CPU requirements for main data processing step.
 - 2017 May 165 ms/event/core
 - * 2018 Nov 70 ms/event/core \Rightarrow
 - 500 simultaneous job slots ≈ 7 KHz data analysis (2 3x slower than data taking)
 ⇒ About 13 weeks to process 2019 data. Actual time will depend on number of job slots.
 - Profile: http://nuclear.unh.edu/HPS/Profiles/Call Tree doProcess 2018 12 11.xml

```
Tree: Call Tree
calls: 4827, local time:NaN, total time: 1,663,533.008 ms , 50.30 % -- org.hps.recon.tracking.TrackerReconDriver.process
  calls: 4827, local time: NaN, total time: 1,663,406.703 ms, 50.30 % -- org.lcsim.util.Driver.process
     calls: 4827, local time: NaN, total time: 1,663,402.222 ms , 50.30 % -- org.lcsim.util.Driver.processChildren
       calls: 4827, local time: NaN, total time: 1,663,391.957 ms , 50.30 % -- org.lcsim.util.Driver.doProcess
         calls: 4827, local time:NaN, total time: 1,663,382.259 ms , 50.30 % -- org.hps.recon.tracking.SeedTracker.process
           calls: 9653, local time:NaN, total time: 2.511 ms , .00 % -- java.lang.System.nanoTime
         calls: 9653, local time:NaN, total time: 1.784 ms , .00 % -- java.util.Iterator.hasNext
            calls: 4827, local time: NaN, total time: .789 ms , .00 % -- java.util.List.iterator
         calls: 4827, local time: NaN, total time: .708 ms , .00 % -- java.util.Iterator.next
        calls: 21254, local time: NaN, total time: 38.275 ms , .00 % -- hep.physics.vec.VecOp.sub
        calls: 9652, local time: NaN, total time: 10.848 ms , .00 % -- org.lcsim.event.base.BaseLCSimEvent.get
        calls: 4826, local time: NaN, total time: 10.659 ms, .00 % -- org.hps.recon.tracking.TrackerReconDriver.setTrackType
        calls: 21254, local time: NaN, total time: 6.257 ms , .00 % -- hep.physics.vec.BasicHep3Vector.magnitude
        calls: 33688, local time: NaN, total time: 3.698 ms , .00 % -- java.util.Iterator.hasNext
        calls: 25058, local time: NaN, total time: 2.749 ms , .00 % -- java.util.Iterator.next
        calls: 21254, local time: NaN, total time: 2.389 ms , .00 % -- hep.physics.vec.BasicHep3Vector.<init>
        calls: 21254, local time: NaN, total time: 1.971 ms , .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.getCorrectedPosition
        calls: 21254, local time: NaN, total time: 1.921 ms, .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.getPosition
        calls: 21254, local time: NaN, total time: 1.891 ms , .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.chisq
        calls: 8630, local time: NaN, total time: 1.333 ms , .00 % -- java.util.List.iterator
        calls: 4826, local time: NaN, total time: .887 ms , .00 % -- java.util.List.size
        calls: 3804, local time: NaN, total time: .432 ms , .00 % -- org.lcsim.event.base.BaseTrack.getTrackerHits
calls: 1207, local time: NaN, total time: 692,632.061 ms , 21.00 % -- org.hps.recon.ecal.EcalRawConverter2Driver.process
calls: 1207, local time:NaN, total time: 483,325.585 ms , 14.60 % -- org.hps.recon.tracking.RawTrackerHitFitterDriver.process
• alls: 1206, local time:NaN, total time: 259,630.054 ms , 7.90 % -- org.hps.recon.tracking.gbl.GBLRefitterDriver.process
calls: 1207, local time:NaN, total time: 87,474.758 ms , 2.60 % -- org.hps.recon.tracking.DataTrackerHitDriver.process
calls: 1207, local time: NaN, total time: 36,481.321 ms, 1.10 % -- org.hps.recon.tracking.HelicalTrackHitDriver.process
```

Resource use, CPU - Monte Carlo

- * Throughput for MC production is much harder to assess due to the many different steps involved.
- The A' "signal" MC events are quick to produce.
- Most expensive is full background simulation:
 Wide Angle Bremsstrahlung + Trident + Beam background.
 - A useful input event sample, 100M events, requires:
 - * 100M Trident events from MadGraph ≈ 10k core-hours
 - Proportional amount of WAB, MadGraph ≈ 10k core-hours
 - Beam background generation ≈ 10k core-hours
 - Detector simulation ≈ 7 ms/event, 1 hour per file, 10k files ≈ 10k core-hours for full run.
 - ❖ Reconstruction of simulated data ≈
 - * Total CPU for 100M event run is ≈ 45 k core-hours $\Rightarrow 500$ jobs for 4 days.

Resource use, disk

* Estimated disk space usage:

- For 2016 engineering run raw data were 2 GB
 - * File contains ≈ 407 k events, takes 20s to 30s to write.
 - Processed reconstruction file has 396k events.
 - Space for reconstructed event file + all DSTs = 7 GB

Space for 2019 run

- 9 Weeks, at 50% efficiency = 756h = 2.7 M sec.
- * At 20 kHz, we expect \approx 54B events.
- Raw data storage expected: 260 TB.
- Processed data storage expected: 910 TB
 - * The DST only would take 65 TB.

One run file:

	Size [Mb]	# of events
Raw data	2048	407500
recon	6100	395930
dst	521	395930
v0_dst	26	10852
pulser_dst	6.8	14036
Moeller_ds	14	6396
nt_tri	26	10962
nt_Moeller	9.1	4350
v0	219	10852
pulser	159	14036
Moeller	124	6396
Total	7205	

- * MC, 100M events simulation output ≈ 8 TB.
 - * Reconstruction of simulated output is only about 1% if input, because of acceptance and background rejection.

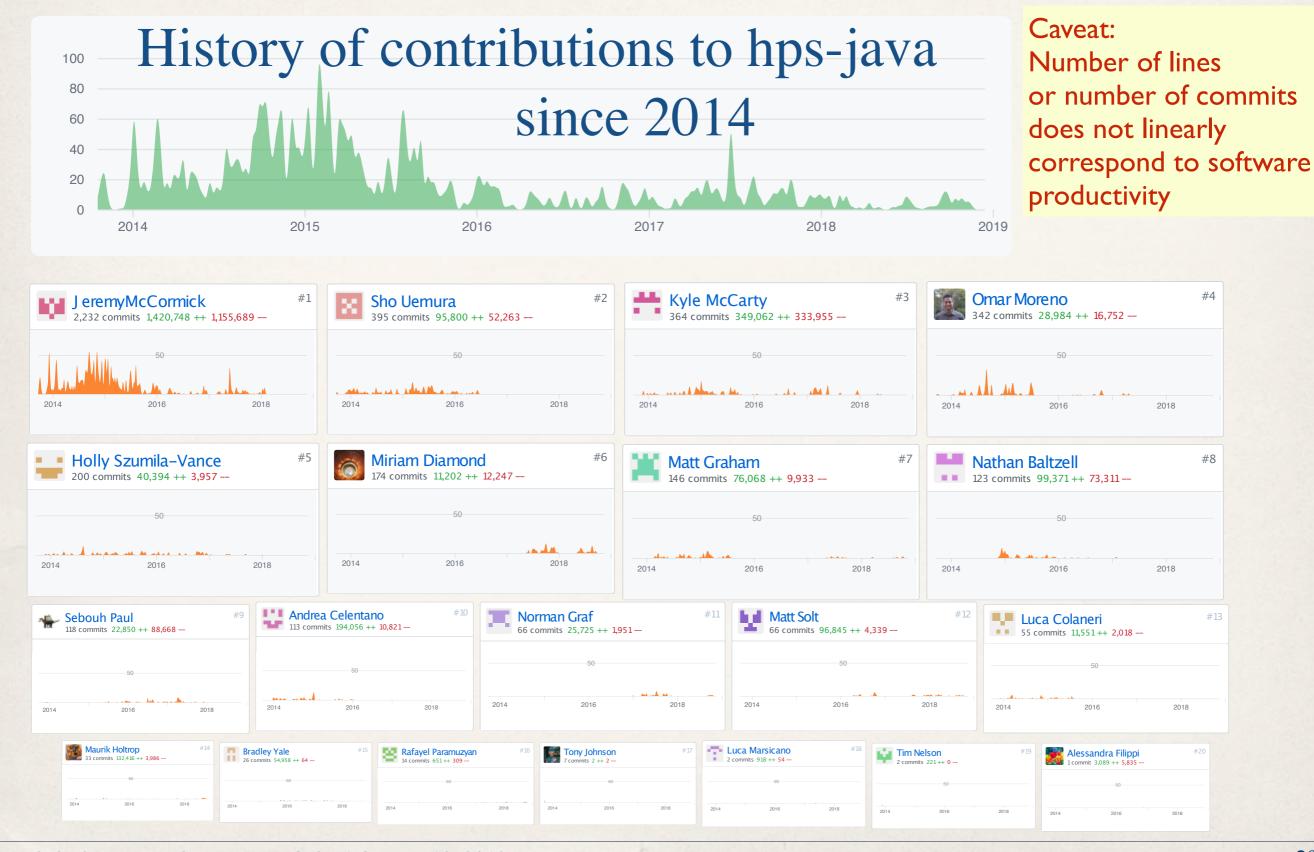
Software Task List

Mostly, our software is in reasonably good shape, but many improvement are desirable: directly related to 2019 running, smoothing operations, speeding up processing.

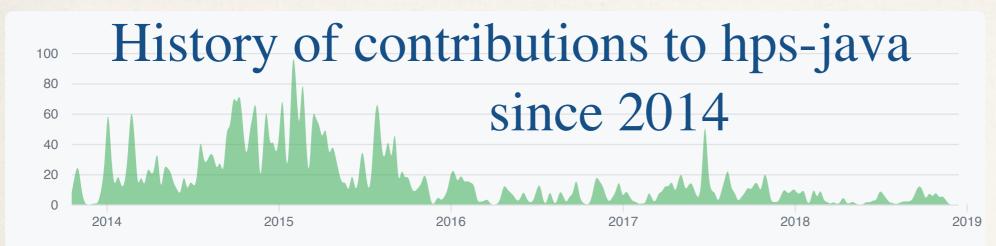
Very Important (critical) Tasks for 2019 run:

- Complete Hodoscope simulation and new trigger optimization analysis.
 - * Extensive task which is already well underway. See Rafayel Paremuzyan's talk.
- Add FADC bit-packed data decoder to hps-java.
 - Already exists for CLAS12, so not expected to be too complicated.
- Update monitoring histograms.
 - Needs hodoscope and L0 histograms added.
 - Cleaning up existing histograms.
- Improve/update data quality monitoring.
 - Update for hodoscope and L0.

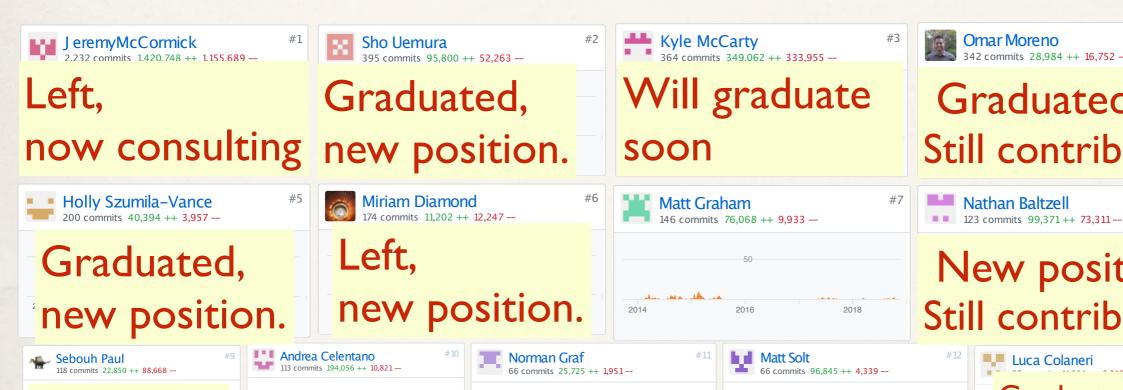
Software Task List


* Important Tasks, highly desirable:

- Improve the alignment procedures.
 - We need to get detector alignment to be easier so results can be obtained more quickly.


Other Important Tasks:

- * Revisit all other calibrations and see where updates are needed.
 - It has been a little while since we last needed a full calibration.
- Improve processing speed of the code.
 - Further improve the speed of the tracking code.
 - * Complete the investigation of alternate tracking: Kalman filter and different seed finder.
 - Possibly: preprocess the FADC and SVT pulse fits.
- Learn to use the Open Science Grid for simulation.
- * Lots of minor issues, maintenance issue, code improvements on issues lists.

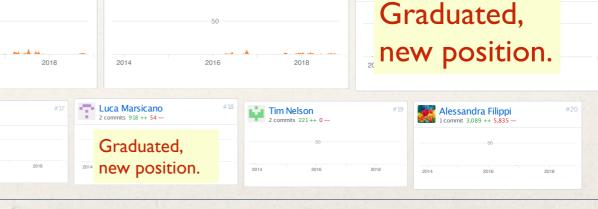

Software contributions

Software contributions

Not too surprising, there is a fair bit of turnover in the contributors to the software.

Tony Johnson

Graduated, np, Still contributing


Omar Moreno

Nathan Baltzell

342 commits 28,984 ++ 16,752 --

Luca Colaneri

Will graduate

Graduated,

new position.

Software contributions

- New people joining software team:
 - Cameron Bravo (SLAC), once SVT L0 work is finished.
 - New Postdoc (UNH), advertisement is out.
 - New students
- * Total number of software tasks, and amount of effort required, is now lower than 4 years ago, just before the 2015 engineering run.
- * Fewer tasks are critical.
- There is still need for further development on improvements.

Conclusions