# HPS Software

Presentation for DOE Review at SLAC

January 18, 2019

# Overview

### Introduction

- History
- System Overview
- Software Organization Overview
- Software Group
- Outstanding Task List
- Historic and projected manpower
- System resource utilization
- Conclusions

# Introduction - history

- Early decision by collaboration to leverage the existing expertise in the SLAC group with the Linear Collider Simulation, LCSim software framework.
  - JLab (CLAS12) software was too immature, and would not suffice for expected 6-GeV era run.
  - Not enough time and manpower to start from scratch.

Result:

- Development of "hps-java" code, which utilizes the "lcsim" framework.
  - ✤ +/- Main code development is in Java.
  - + Robust framework to develop on.
  - + Existing tracking component: seed tracker.
  - No overlap with JLab code.
- Main data storage model: LCIO.
  - + Read / write capabilities from Java and C++.
  - Less flexibility in contents.

# Introduction - System Overview: MC



A' events, Background events

SLIC or hps-sim : Main GEANT4 based simulation.

Readout: Simulates electronics and trigger.

hps-java: Analysis framework: SVT, ECAL, Tracking, Hodoscope

dst-maker or hpstr - reads slcio files and produces data summary files.

Part of org.lcsim that computes geometries.

HPS Software - DOE Review @ SLAC - Jan 18, 2019

## Introduction - System Overview: Data



HPS Software - DOE Review @ SLAC - Jan 18, 2019

# Introduction - System Overview

### Calibrations:

- SVT online calibration code timing in, pedestals, gains.
  - Existing code that runs during commissioning to time in and check SVT.
- ECal calibration Cosmic ray calibration, Full Energy Electron calibration.
  - Existing code to calibrate ECal, pedestals and gains.
- Hodoscope calibration
  - Code needs to be written, but can borrow from ECal code.
- Detector Alignment Millipede II
  - Complicated procedure for getting a good alignment.
  - High on Tracking Group priority list to simplify and improve this procedure.

### Physics Analysis Code:

- Runs after data reconstruction.
- Was in the domain of individual analyzers, but is now becoming more centralized.
- See presentation by Nathan Baltzell.

## Introduction - Software Organization

- Code repository GitHub
  - Tracks code, allows development on branches
  - Merging only through "pull requests", which must be approved.
- Issue Tracking GitHub
  - Couples code issues with branches.
- Code Documentation Confluence Wiki + Java Doc
- Build System Maven
- Testing Maven integration tests.
- Continuous integration testing Jenkins / Hudson
- Code profilesJProfiler
- Releases:

- Github + Maven + Nexus.
- Release is tagged on GitHub.
- Resulting JAR file is available for download from Nexus.

## Introduction - Software Group

- Bi- Weekly meetings with online presentations.
- Software group mailing list
- SLACK for more immediate communication.
- Lead: Maurik Holtrop
  - Tracking lead: Norman Graf
  - MC Generators: Takashi Maruyama
    - MC data production: Bradley Yale
  - Trigger: Valeri Kubarovsky
    - Trigger code: Kyle McCarty
  - Data Processing: Rafayel Paremuzyan
  - Analysis software: Matt Graham, Nathan Baltzell
  - Specific codes:
    - DST code: Omar Moreno
    - MC Simulation code, conditions system: Jeremy McCormick

### Monte Carlo Generators

### Monte Carlo Detector Model

# Tracking

HPS Software - DOE Review @ SLAC - Jan 18, 2019



# Monitoring

# Resource use, CPU

CPU requirements for main data processing step.

- 2017 May 165 ms/event/core
- 2018 Nov 53 ms/event/core
- Profile: http://nuclear.unh.edu/HPS/Profiles/Call\_Tree\_doProcess\_2018\_12\_11.xml

Tree: Call Tree

calls: 4827, local time:NaN, total time: 1,663,533.008 ms , 50.30 % -- org.hps.recon.tracking.TrackerReconDriver.process calls: 4827, local time:NaN, total time: 1,663,406.703 ms , 50.30 % -- org.lcsim.util.Driver.process calls: 4827, local time:NaN, total time: 1,663,402.222 ms , 50.30 % -- org.lcsim.util.Driver.processChildren calls: 4827, local time:NaN, total time: 1,663,391.957 ms , 50.30 % -- org.lcsim.util.Driver.doProcess calls: 4827, local time: NaN, total time: 1,663,382.259 ms , 50.30 % -- org.hps.recon.tracking.SeedTracker.process calls: 9653, local time:NaN, total time: 2.511 ms, .00 % -- java.lang.System.nanoTime calls: 9653, local time:NaN, total time: 1.784 ms , .00 % -- java.util.Iterator.hasNext calls: 4827, local time:NaN, total time: .789 ms , .00 % -- java.util.List.iterator calls: 4827, local time:NaN, total time: .708 ms , .00 % -- java.util.Iterator.next ۵ calls: 21254, local time: NaN, total time: 38.275 ms , .00 % -- hep.physics.vec.VecOp.sub ۵ calls: 9652, local time: NaN, total time: 10.848 ms, .00 % -- org.lcsim.event.base.BaseLCSimEvent.get ۵ calls: 4826, local time: NaN, total time: 10.659 ms , .00 % -- org.hps.recon.tracking.TrackerReconDriver.setTrackType ا ش calls: 21254, local time: NaN, total time: 6.257 ms , .00 % -- hep.physics.vec.BasicHep3Vector.magnitude calls: 33688, local time: NaN, total time: 3.698 ms , .00 % -- java.util.Iterator.hasNext 0 0 calls: 25058, local time:NaN, total time: 2.749 ms , .00 % -- java.util.Iterator.next 0 calls: 21254, local time: NaN, total time: 2.389 ms , .00 % -- hep.physics.vec.BasicHep3Vector.<init> 0 calls: 21254, local time: NaN, total time: 1.971 ms , .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.getCorrectedPosition 0 calls: 21254, local time: NaN, total time: 1.921 ms , .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.getPosition 0 calls: 21254, local time: NaN, total time: 1.891 ms , .00 % -- org.lcsim.fit.helicaltrack.HelicalTrackHit.chisq 6 calls: 8630, local time: NaN, total time: 1.333 ms , .00 % -- java.util.List.iterator 6 calls: 4826, local time: NaN, total time: .887 ms , .00 % -- java.util.List.size 0 calls: 3804, local time: NaN, total time: .432 ms , .00 % -- org.lcsim.event.base.BaseTrack.getTrackerHits calls: 1207, local time:NaN, total time: 692,632.061 ms , 21.00 % -- org.hps.recon.ecal.EcalRawConverter2Driver.process calls: 1207, local time: NaN, total time: 483,325.585 ms , 14.60 % -- org.hps.recon.tracking.RawTrackerHitFitterDriver.process calls: 1206, local time: NaN, total time: 259,630.054 ms , 7.90 % -- org.hps.recon.tracking.gbl.GBLRefitterDriver.process calls: 1207, local time: NaN, total time: 87,474.758 ms , 2.60 % -- org.hps.recon.tracking.DataTrackerHitDriver.process I calls: 1207, local time:NaN, total time: 36,481.321 ms , 1.10 % -- org.hps.recon.tracking.HelicalTrackHitDriver.process

# Resource use, CPU

CPU requirement for MC production.

## Resource use, disk

Estimated disk space usage.

# Software Task List

Mostly, our software is in reasonably good shape, but many improvement are desirable: directly related to 2019 running, smoothing operations, speeding up processing.

#### Critical Tasks for 2019 run:

- Complete Hodoscope simulation and new trigger optimization analysis.
  - Extensive task which is already well underway. See Rafayel Paremuzyan's talk.
- Add FADC bit-packed data decoder to hps-java.
  - Already exists for CLAS12, so not expected to be too complicated.
- Update monitoring histograms.
  - Needs hodoscope and L0 histograms added.
  - Cleaning up existing histograms.
- Improve/update data quality monitoring.
  - Update for hodoscope and L0.

## Software Task List

### \* Important Tasks, highly desirable:

- Improve the alignment procedures.
  - \* We need to get detector alignment to be easier so results can be obtained more quickly.

## Software Task List

### Other Important Tasks:

- Improve the alignment procedures.
  - \* We need to get detector alignment to be easier so results can be obtained more quickly.
- Revisit all other calibrations and see where updates are needed.
  - It has been a little while since we last needed a full calibration.
- Improve processing speed of the code.
  - Further improve the speed of the tracking code.
  - \* Complete the investigation of alternate tracking: Kalman filter and different seed finder.
  - Possibly: preprocess the FADC and SVT pulse fits.
- Learn to use the Open Science Grid for simulation.

Lots of minor issues, maintenance issue, code improvements on issues lists.

## Software contributions



HPS Software - DOE Review @ SLAC - Jan 18, 2019

# Software contributions



HPS Software - DOE Review @ SLAC - Jan 18, 2019

## Conclusions

| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
|-------------------------------------------------|-------------------|------------------|------------------|--|
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
| HPS Software - DOE Review @ SLAC - Jan 18, 2019 |                   |                  |                  |  |
|                                                 | HPS Software - DC | DE Review @ SLAC | 2 - Jan 18, 2019 |  |