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ABSTRACT
Machine learning is an automatic technique that is revolutionizing the scientific research with
innovative applications and the Artificial Neural Networks (ANN) is a powerful machine
learning method widely use in astrophysics. In eight years of operation the Fermi-LAT gamma
telescope detected more than 5000 γ-ray sources but the number of unassociated sources and
uncertain blazars has exceeded 50% of the detected sources. ANN algorithms were applied
to classify Fermi uncertain sources when strict classifications were not available significantly
improving the number of classified objects. The aim of this study was to optimize the precision
and effectiveness of an ANNmachine learning method in order to open up new considerations
on the population of the γ-ray sky, and the precision of significant samples selection planning
for rigorous analyses and multiwavelength observational campaigns.

Key words: Methods: statistical – Galaxies: active – radiogalaxy objects: general – Gamma-
rays: galaxies – radio continuum: galaxies

1 INTRODUCTION

Since August 2008 the Fermi Large Area Telescope (LAT) provides
the most comprehensive view of the γ-ray sky in the 100 MeV -
300 GeV energy range (Atwood et al. 2009). The LAT 4-year Point
Source Catalog 3FGL (Acero et al. 2015) listed 3033 γ-ray sources
of which 1717 were blazars considering 573 sources whose blazar
classification remained uncertain. In addition 1010 of the detected
sources had not even a tentative association with a likely γ-ray
emitting source. As a total result, the nature of about half the γ-ray
sources is still not completely known even if, because of blazars
are the most numerous γ-ray source class, it could be reasonable
to expect that a large fraction of unassociated sources might belong
to BLLs or FSRQs. When rigorous classification analyzes are not
available, machine learning techniques (MLT) represent powerful
tools that enable identification of uncertain objects based on their
expected classification. Machine learning is a data analytics tech-
nique that teaches computers to do what comes naturally to humans
and animals: learn from experience. Traditional computer programs
do not consider the output of their tasks and therefore they are unable
to improve their efficiency. A machine learning method addresses
this exact problems and involves the creation of an algorithm that is
able to learn and therefore improve its performances by gathering
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more data and experience. MLT uses identified objects to teach the
algorithm to distinguish each source class on the basis of param-
eters that describe its intrinsic features. The algorithm adaptively
improves its performance as the number of samples available for
learning increase. ANN algorithm has been applied to astrophysical
objects, such as γ-ray unclassified sources, in order to quantify their
probability of belonging to a specific source class. The algorithm
generates an output that can be interpreted as a Bayesian a poste-
riori probability modeling the likelihood of membership class on
the basis of input parameters (Gish 1990; Richard et al. 1991). In
this work we explored the possibility to improve the performance
of a machine learning algorithm based on the variability of blazars
applying new physical parameters that characterize the nature of
those sources and some statistical adjustments in order to increase
the accuracy of the algorithmmaking it more efficient and effective.
The expected result should be an optimized algorithm that is able
to estimate, with more precision than in the past, the number of
uncertain blazars that could belong to BLL or FSRQ class in the
Fermi LAT Point Source Catalogs.
The paper is organized as follows: in Sect. 2 we provide a brief de-
scription of the main features of the most frequently used machine
learning techniques in astrophysics. In Sect. 3 we present our opti-
mization of anANNmethod. In Sect. 4we compare the performance
of the optimized algorithm against the original one and comment
the results testing the performances of the new algorithm sample
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of uncertain or unassociated γ-ray sources. We discuss predictions
and implication of our results in Sect. 5.

2 MACHINE LEARNING TECHNIQUES

In previous studies (Ackermann, M. et al. 2012; Lee et al. 2012;
Hassan et al. 2013; Doert et al. 2014; Chiaro et al. 2016; Mirabal
et al. 2016; Saz Parkinson et al. 2016; Lefaucheur et al. 2017;
Salvetti et al. 2017) and other authors have explored the application
of machine learning methods classifying uncertain γ-ray sources.
Here we briefly introduce the general features of the most frequently
MLT used in astrophysics.

• The Random Forest. The Random Forest method (RF)
(Beimann 1973) is an ensemble learning method that uses decision
trees as building blocks for classification, regression and other tasks.
By aggregating the predictions based on a large number of decision
trees, Random Forest generally improves the overall predictive per-
formance while reducing the natural tendency of standard decision
trees to over-fit the training set.The Random-Forest package also
computes the proximity measure, which, for each pair of elements
(i, j), represents the fraction of trees in which elements i and j fall in
the same terminal node. This can be used to calculate the outlying-
ness of a source, as the reciprocal of the sum of squared proximities
between that source and all other sources in the same class, normal-
ized by subtracting the median and dividing by the median absolute
deviation, within each class (Liaw et al. 2002). Saz Parkinson et
al. (2016); Hassan et al. (2013); Mirabal et al. (2016) used the
Random Forest algorithms classifying uncertain AGN or blazar-like
sources from the Fermi gamma ray source catalogs (Acero et al.
2015; Ackermann, M. et al. 2015).
• The Support Vector Machines. The Support Vector Machine

(SVM) (Cortes et al. 2013; Vapnik 1995) is a discriminative clas-
sifier formally defined by a separating hyperplane. In other words,
given labeled training data (supervised learning), the algorithm out-
puts an optimal hyperplane which categorizes new examples. In two
dimensional space this hyperplane is a line dividing a plane in two
parts where in each class lay in either side. The method maximises
the separation between different classes, which can then be used in
classification or regression analysis. In Hassan et al. (2013) the au-
thors used a Support Vector Machines algorithm with the Random
Forest algorithm building a classifier that can distinguish between
two AGN classes: BLL and FSRQ based on observed gamma-ray
spectral properties.
• The Boosted Decision Trees. The Boosted Decision Tree

(BDT) was used in Freud et al. (1999); Lefaucheur et al. (2017).
It is based on the decision trees, a classifier structured on repeated
yes/no decisions designed to separate positive and negative classes
of events. Thereby, the phase space of the discriminant parameters
is split into two different regions (Freud et al. 1999) and generates
a forest of weak decision trees and combines them to provide a
final strong decision. At each step, misclassified events are given
an increasing weight. BDT was used in with another method of the
artificial neural network class of algorithms to classify uncertain
blazar sources among the Fermi-LAT detentions.
• The Artificial Neural Network.

The Artificial Neural Network (ANN) (Bishop 1995) is probably
the most used machine learning technique in astrophysics. ANN al-
gorithms were used in Chiaro et al. (2016); Salvetti et al. (2017) for
classifying uncertain γ-ray sources and were also used in the above
cited Saz Parkinson et al. (2016); Hassan et al. (2013); Lefaucheur
et al. (2017).

Standard neural network consists of an input layer, one or more
hidden layers and an output layer. In Fig. 1 the schematic view of
the basic architecture of an Artificial Neural Network algorithm is
shown. Neurons in the input layer are values of input parameters.
Each neuron in the first hidden layer has a set of weights which are
associated to input parameters. The sum of products between each
weight and input parameter1 is then used in a transfer function to
create a single output. The outputs of neurons in hidden layer are
then used as input values for the neurons in successive hidden layer
and so on. Neurons in output layer work the same way and they give
the final result.
When classification is the goal, usually the number of neurons in
output layer equals the number of classes; the sum of outputs from
these neurons equals 1 and output value from each neuron is inter-
preted as probability of belonging to a given class.
Training the network with known/labeled sources involves setting
the weights of all neurons in the network so that difference be-
tween given outputs and desired outputs, quantified by a Loss/Cost
function, is minimized. The sample of sources used in training the
network typically contain 50 - 80 % of all known sources. The rest
are divided into two independent samples - validation sample and
test sample which are used to avoid over-fitting and to evaluate net-
work on sources it hasn’t seen during training.
The original ANN algorithm that we considered in this study has
been used for the first time in Chiaro et al. (2016) (hereinafter C16)
and subsequently in Salvetti et al. (2017) (hereinafter S17). The
algorithm compared the γ-ray light curve of the source under inves-
tigation with a template of classified blazar class light curves, then
measured the difference in a proper metric. The authors of both the
paper used a simple neural model known as Two Layer Perceptron
(2LP), rather similar to the method used by Lefaucheur et al. (2017)
but with a simpler architecture.
In thisworkwe explored possibilities to improve the efficiency of the
original algorithm used in C16 and subsequently in S17. Even if the
original ANN algorithm was very effective, the number of sources
with uncertain classification in C16 and S17 remained consistent.
Optimizing the original algorithm we used TensorFlow2 which is
an open source library for machine learning. It provides details on
the process of training and is built to be fast - network can be trained
on a computer in relatively short time.

3 THE METHOD

3.1 Network optimization

In C16 the Empirical Cumulative Distribution Function (ECDF)
of the monthly bins of the 3FGL BCUs γ-ray light curves was
applied to the ANN as an estimator able to classify BCUs into
BLLs and FRSQs. This parameter contains information of flaring
patterns, along with maximum flare, and variability of the sources.
The distinctiveness of 3FGL BLLs and FSRQs sorted by ECDF is
shown in Fig. 2. This result convinced the authors to use the ECDF
as the soleANNparameter to compute the likelihood of their sample
of uncertain sources to be BLL or FSRQ. However inC16 analyzing
573 BCUs, 77 sources remained of uncertain classification. Also in
S17 classifying with the same algorithm the AGN-like sources, 103
of 559 sources remained of uncertain blazar classification.

1 A single value bias can be added.
2 https://www.tensorflow.org
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Figure 1. Schematic view of a Two Layer Perceptron (2LP), the Artificial
Neural Network architecture. Data enter the 2LP through the nodes in the
input layer. The information travels from left to right across the links and
is processed in the nodes through an activation function. Each node in the
output layer returns the likelihood of a source to be a specific class.

In this study, in order to improve the performance of the network,
we considered and tested new and different parameters as potential
input for the algorithm.

3.2 Flux in different energy bands

An interesting set of parameters that we considered was the time
integrated fluxes in different energy bands Fig. 3. This set of param-
eters contains information of average spectral index, hardness ratio
and peak energy. In Lefaucheur et al. (2017) it was highlighted as a
good selector. We considered five different energy bands : 100-300
MeV, 300-1000MeV, 1-3 GeV, 3-10 GeV, 10-100 GeV. and in Fig. 3
3FGL BLL and FSRQ distributions in energy bands against the
time-integrated γ-ray flux (cm−2 s−1) are shown. It is interesting
to note that in the range of flux ∼ 10−10 and energy bands from
100-300 MeV up to 1-3 GeV mostly BLLs are present (see diagram
below left in Fig. 3) while for energy band 10-100 GeV FSRQs
are more numerous for the lower values of fluxes, around ∼ 10−15.
It is also notable that majority of BLLs and FSRQs have different
slopes across all energy bands Fig. 3, which is in part a reflection
of different average power-law indices.

3.3 Radio and X-ray fluxes

Looking beyond γ-ray features of blazars, interesting information
could be obtained from a multiwavelenght study of the sources and
particularly fromX-ray and radio flux. In this studywe also tested the
possibility to use those two parameters improving the performance
of the network. We didn’t consider any optical spectroscopy data
because when considering uncertain sources, optical spectra are
very often not available or not sufficiently descriptive of the nature
of the source.
A particularly interesting parameter seems to be the ratio of the
radio (Sr) flux versus the X-ray flux. In Fig. 4 the radio and X-ray
photon flux histograms are shown. When both the parameters are

 

Figure 2. ECDF light curves with monthly time bins of 3FGL blazars from
4 years of data. Monthly flux values for each source are sorted from lowest
to highest. Each curve represents a single source. BLLs are in the top-left,
FSRQs in the top-right, both are in the lower-left and BCUs are in the lower-
right. ECDFs for some sources extend beyond the plot limit of 10−7 cm−2

s−1. Credit : (Chiaro et al. 2016)

Figure 3. Time integrated fluxes in 5 different energy bands. Each curve
represents a single source. BLLs (blue) are in the top-left, FSRQs (red) in the
top-right, both are in the lower-left and BCUs (green) are in the lower-right.
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considered separately the contamination is not negligible (histogram
on top and in the middle), but when the ratio Sr/X-ray is considered
it is possible to distinguish a clean area for BLLs by ratio values
minor than 4× 1013. Unfortunately not all the known and uncertain
blazars have both radio and X-ray flux data. However the final result
is still appreciable because considering 3FGL blazars, 322 BLL out
of 660 have both radio and X measurement and for 188 sources
(28%) the value is minor than 4 × 1013. Also 146 FSRQs out of
484 have both measurements but none shows a ratio value minor of
the defined threshold. Finally, out of 507 3FGL BCUs, 107 sources
have both measurements while 57 show a value of the ratio minor
than the threshold. This means that the ratio of radio to X-ray flux,
although an overlap of data in higher values in not negligible it
could be considered as a smoking gun area where a good separation
for BLLs is possible, if the ratio value is minor than 4 × 1013.
Radio fluxes used were measured at frequencies of 1.4 GHz and 0.8
GHz; the X-ray fluxes were measured in the 0.1 - 2.4 keV range.
Data were obtained from the third Fermi-LAT 4-year AGN Catalog
3LAC (Ackermann, M. et al. 2015).

3.4 ECDF data

Since ECDF curves represent the main set of ANN parameters
originally used in C16, it was interesting to test if some statistical
methods could improve the final performance of the network. In
Fig. 2 by a simple looking by eyes observation of the plots on the
left side it is possible to see on the top-left of the diagram a specific
area where the overlap between BL Lac and FSRQ is minimal. This
area shows an upper limit of the γ-ray flux of ∼2.5 x 10−8 cm−2 s−1

that leaded to a first qualitative recognition of BLL candidates. This
result seems reasonable if we consider the different flare activity of
the two class of blazars and the related different slope of the ECDF
plots. However for sources with higher values of photon flux, the
light curves of BLLs and FSRQs are much more intertwined and
they don’t seem to be easily distinguishable.
Removing some of these sources would help the network make a
better separation. One way to proceed is to remove sources which
don’t have a single monthly time bin without flux value above de-
tection threshold Fig. 5. Applying this constrain, number of BLLs
fell from 660 to 589 (-10%) and FSRQs from 484 to 433 (-10%) .
The reduction of source number did not affect training and testing
the network. Also BCUs number fell from 573 to 567, so only 6
sources were lost for classification.

3.5 Data input

If certain parameter values (for an input neuron) from different
sources vary over several orders of magnitude, it is usually good
practice to use the logarithm of those values. However it is not al-
ways the case that this strategy improves the performance of the
network since all input neurons are treated together in training of
the network. Combinations with both original values and their log-
arithms were checked. The results are reported in Sect. 4.1.
The input data were normalized by subtracting their average value
and dividing by their standard deviation so most of the input values
fell between -1 and +1 for each input neuron.
Majority of sources don’t have γ-flux value above detection thresh-
old for all monthly time bins. Additionally the radio (Sr) and X-ray
data are missing for many sources. One way to deal with missing
input data to neural network is to set those inputs to zero. In this way,
zero input acts as if there is no input neuron. Since Fermi satellite
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Figure 4. On top: 3FGL BLL and FSRQ radio flux histogram. Even if the
two peaks are well separated, the contamination is not negligible. In the
middle: 3FGL BLL and FSRQ X-ray flux histogram. The two classes show
a full overlap and they are mainly indistinguishable using only this index. On
the bottom: 3FGL BLL and FSRQ radio flow / X-ray flux ratio histogram.
A BLL clean area is distinguished by ratio values lesser than 4 × 1013.

sweeps the sky continuously, the non-detection of γ-flux is due to
low value of photon flux during the detection and not observational
constraints. The missing Sr and X data are due to low flux and/or
observational constraints.
In our tests the input radio and X-ray data for sources with missing
radio and X values were set to zero after normalization of input
parameters (which they didn’t affect). They were set to zero as well
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Figure 5. ECDFs: The upper two plots contain all the sources while the two
plots at the bottom contain 3FGL blazars after applying the cut. The number
of sources for each class is written on the plots. Blue curves correspond to
BLLs, red to FSRQs and green to BCUs. After applying the cut, the lower-
right part of the ECDF plot for BLLs and FSRQs becomes more clear. For
BCUs, the lower-right part of the ECDF plot remains similar after the cut
because there were not many sources passing trough it (only 6 sources are
removed by the cut).

if the logarithm of Sr and X was taken.
The input data for missing monthly gamma-flux is zero but it wasn’t
set to zero after normalization (which it affected). After normaliza-
tion these data had the lowest values. In case logarithm was taken,
to avoid logarithm of 0, these data were set to minimal value of
monthly detected flux of 4 × 10−11 cm−2 s−1 (of any source) be-
fore logarithm was taken. After that data were normalized as in the
previous case.

3.6 Network architecture

What follows is the architecture of the optimized network used in
this work.
The number of neurons in input layer is equal to the number of input
parameters. The ECDFs accounted for 48, γ-fluxes in energy bands
accounted for 5, ratio of radio to X-ray flux for 1 neuron. With all
parameters used, the number of input neurons is 54.
The hidden layer consisted of 100 neurons. The choice was made
by experimenting with single example for fixed number of training
epochs. It was found that number of neurons should be higher then
number of input parameters (about 50 in our case) but after that the
performance didn’t change noticeably with further increase. The
output layer consisted of two neurons. The activation function for
hidden layer neurons was hyperbolic tangent while for output neu-
rons it was softmax which insured that the sum of output neurons
equals 1.
The batch size was set to number of sources in training sample
which insured smooth convergence and no fluctuation due to dif-
ferent sources in different batches. Although binary cross-entropy

Loss function is commonly used for binary classification, mean
square error produced better results in our case. The minimization
algorithm used was adam-optimizer3 (Kingma et al. 2014) with
default values that converged quicker and gave better results in our
case than classical stochastic gradient descent.

3.7 Training strategy

Typically samples/sources for training set and other sets are chosen
randomly. The fluctuation in performance depending which sources
are taken might be important. In our case there are about 1000 la-
beled sources (BLLs and FSRQs) and it was found that the number
of unclassified BCUs may vary significantly depending how train-
ing and other sets are chosen. In Lefaucheur et al. (2017) the same
problem was noted and we decided to test the strategy suggested
from the authors, by training the network for 100 different training
and testing samples, and then selecting the set which is closest to
average results. The train set consisted of 70% and test set of 30%
of the 3FGL classified blazars.
Aside from training network on 100 different train and test sam-
ples, to avoid introduction of second independent sample (with yet
smaller number of sources in it), next strategy was used: the number
of epochs was fixed for all combinations of input parameters and
selections of training and testing samples, and network evaluated at
the end; regularization was used to avoid over-fitting. The value for
regularization was chosen so that it allowed network to get close to
lowest test Loss function and to have it smoothly converge by the
final epoch.
The desired outcome for training sample sources was set to [1,0]
and [0,1] for BLLs and FSRQs respectively. In this way the output
neurons returned the likelihood of source belonging to either class.
Inputting parameters from known/labeled sources from testing sam-
ple into the trained network enables network evaluation. Two output
neurons produce likelihood of source being BLL LBLL or FSRQ
LFSRQ such that LBLL + LFSRQ = 1 for each source.
Network performance was evaluated by how many BCUs are left
unclassified applying a 90% precision threshold C16.

4 VALIDATION

4.1 Different combination of input parameters

The set of parameters of our optimized algorithm are 48 γ-flux
values from ECDFs Sect. 3.1, the 5 time integrated γ-flux values
in 5 energy bands Sect. 3.2, the radio to X-ray flux ratio described
in Sect. 3.3, and option of removing sources by applying a cut as
described in Sect. 3.4. Applying those parameters we improved the
performance of the original algorithm decreasing the number of
unclassified BCUs. Considering the 3FGL blazars and BCUs and
running the algorithm applying all the new parameters the ANN
returned a number of unclassified BCUs of 30 instead of 77 as
reported in C16. The application of the logarithm to any of the
parameters instead worsens the network performance. When radio
(Sr) and X-ray parameter were inputted separately instead of the
Sr to X-ray ratio, the number further falls to 19. This result is due
to the fact that more BCUs have separate Sr and/or X than both
Sr and X. Out of the total 573 BCUs in 3FGL, 333 have radio
measurements, 171 have X-ray measurements. Number of BCUs

3 https://www.tensorflow.org/api_docs/python/tf/train/

AdamOptimizer
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Figure 6.Histogramof LBLL for BLLs and FSRQs from the testing sample.
Number of BLLs in testing sample is 177 and FSRQs 130. The blue and red
vertical lines (at LBLL = 0.542 and LBLL = 0.389 respectively) present
thresholds for BLLs and FSRQs such that precision of 90% is obtained.

which have both measurements is 107 while 397 have one or both.
If a ratio is added as a third parameter to radio and X-ray alone, the
performance remains the same.
Finally after the set of parameters was chosen, further tweaking the
network, mainly by selecting mean absolute error as Loss function,
helped by decreasing number of unclassified BCUs to 16.
All the number of unclassified BCUs mentioned above are average
values of unclassifiedBCU from 100 different selections for training
and testing samples.

4.2 Final results

In Fig. 6 histogram of LBLL for BLLs and FSRQs from the opti-
mized testing sample is presented. As expected BLLs concentrate
towards LBLL → 1 while FSRQs LBLL → 0.

The precision of the optimized ANN considering a threshold
of 0.9 can be seen in Fig. 7. Sources from test sample are sorted
by their LBLL (like in the Fig. 6), but sources are at equal distance
from each other and LBLL doesn’t increase linearly. The threshold
where precision reaches 0.9 for BLLs and FSRQs is LBLL = 0.542
and LBLL = 0.389 respectively (blue and red vertical lines).

Applying the threshold values of LBLL = 0.542 and LBLL =

0.389, as above described, the ANN leaves 16 BCU unclassified,
378 classified as BLLs and 173 as FSRQs.

5 CONCLUSION

In this study we explored the possibilities to increase the perfor-
mance of a neural network method previously used for the clas-
sification of uncertain blazars. We considered the improvement of
performance applying new parameters both from the physical fea-
tures of the sources, and also from statistic adjustment of the al-
gorithm input. We developed an optimized version of the original
algorithm improving the selecting performance of 79%. The final
result of this study left 16 uncertain blazar sources instead of 77
in Chiaro et al. (2016). This result confirms the machine learning
techniques as powerful methods to classify uncertain astrophysics
objects and particularly blazars. Given that the forthcoming Fermi-
LAT catalog could show an increasing number of uncertain blazars.
ANN technique could be a very interesting opportunity for the sci-
entific community to select promising target for multiwavelenght
rigorous classification and related studies at different energy ranges
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Figure 7. Lower bar present BLLs (blue) and FSRQs (red) sources from test
sample sorted by increasing LBLL and at equal distance from each other.
The LBLL doesn’t increase linearly in the plot. The upper plot presents
change of precision with LBLL threshold for BLLs and FSRQs. The thresh-
old where precision reaches 0.9 for BLLs and FSRQs is LBLL = 0.542
and LBLL = 0.389 respectively (blue and red vertical lines). Precision is
on average monotonically increasing/decreasing function with LBLL for
BLL/FSRQ. The zig-zag oscillations in precision is due to finite and rela-
tively small number of sources in testing sample.
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Figure 8. Applying trained network to 567 BCU sources. Applying the
threshold values of LBLL = 0.542 and LBLL = 0.389 (blue and red
vertical lines) leaves 16 BCU unclassified, 378 classified as BLLs and 174
as FSRQs.

mainly at very high energies by the present generation of Cherenkov
telescopes and the forthcoming CTA. 4
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