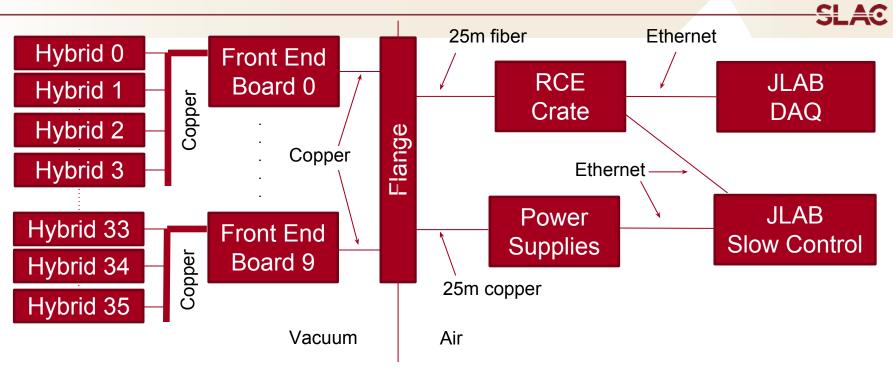
HPS Review, SLAC January 18, 2018

SVT DAQ Update

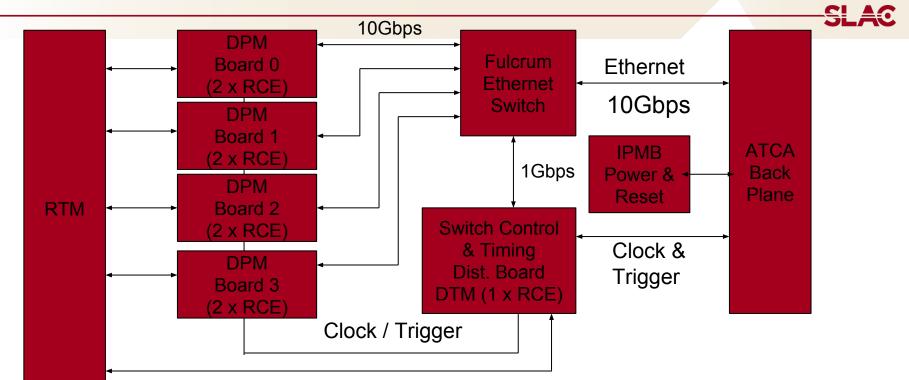
Ryan Herbst, Ben Reese



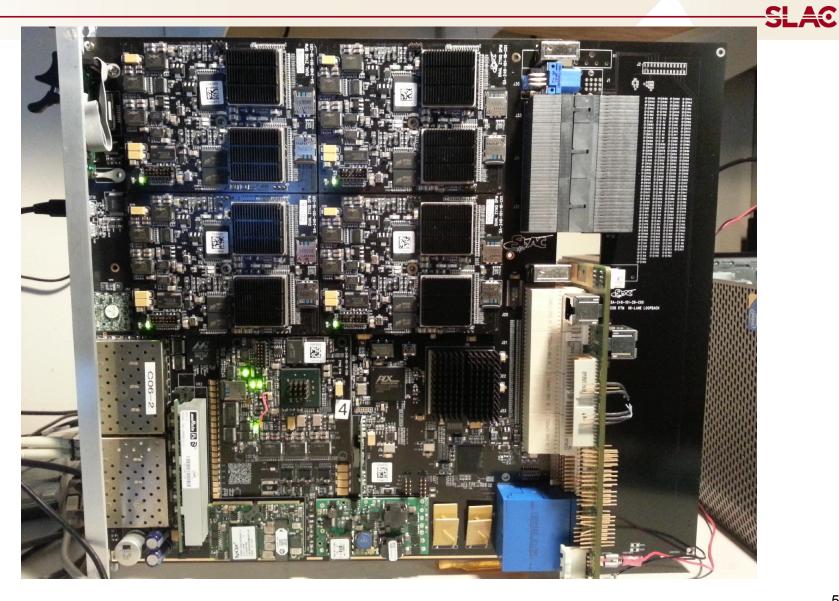
Overview

- SVT DAQ Overview Existing System
- Planned Updates
- Status of Work

SLAC


Existing SVT Overview

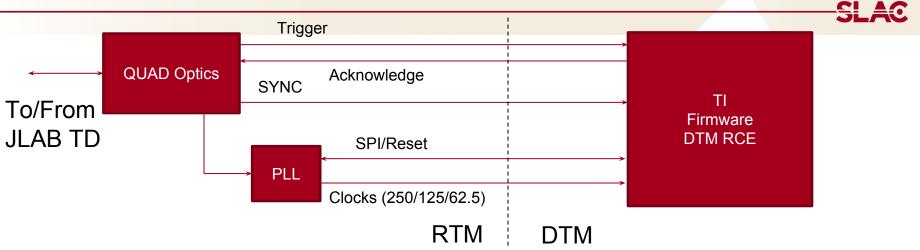
- 36 hybrids
 - 12 in layers 0 3 (2 per module)
 - 24 in layers 4 6 (4 per module)
- 10 front end boards
 - 4 servicing layers 1 3 with 3 hybrids per board
 - 6 servicing layers 4 6 with 4 hybrids per board
- RCE crate: data reduction, event building and JLab DAQ interface


Raw ADC data rate (Gbps)	
Per hybrid	3.33
Per L1-3 Front end board	10
Per L4-6 Front end board	13

SLAC Gen3 COB (Cluster on Board)

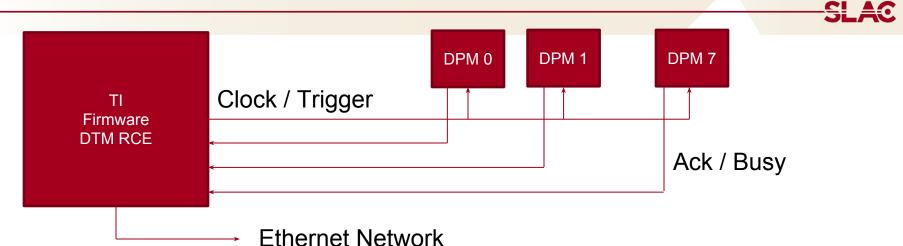
- Supports 4 data processing FPGA mezzanine cards (DPM)
 - 2 RCE nodes per DPM
 - 12 bi-directional high speed links to/from RTM (GTP)
- Data transport module (DTM)
 - 1 RCE node
 - Interface to backplane clock & trigger lines & external trigger/clock source
 - 1 bi-directional high speed link to/from RTM (GTP)
 - 6 general purpose low speed pairs (12 single ended) to/from RTM
 - connected to general purpose pins on FPGA

RCE GEN3 COB

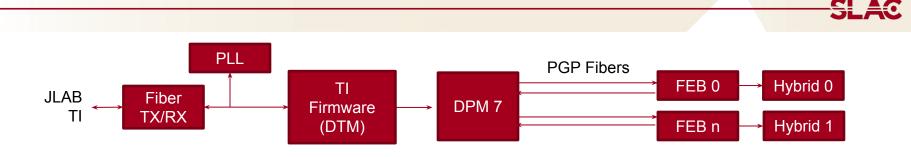


Existing SVT RCE Allocation

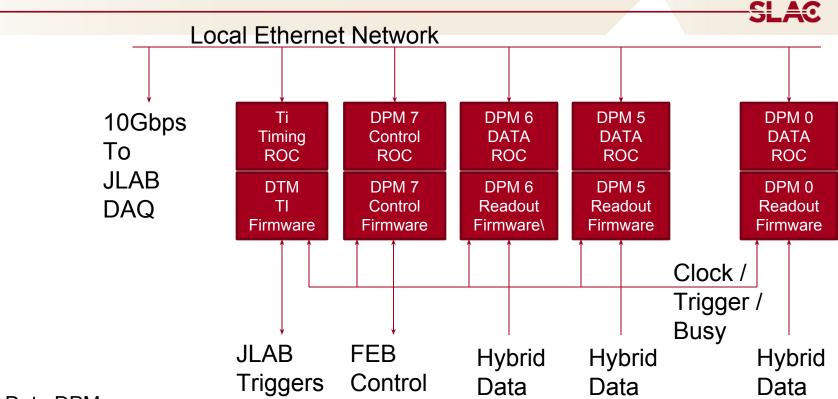
- Two COBs utilized in the SVT readout system
 - 16 RCEs On DPMs (2 per DPM, 4 DPMs per COB)
 - 2 RCEs on DTMs (1 per DTM, 1 DTM per COB)
- 7 RCEs on each COB process data from ½ SVT
 - 18 Hybrids total per COB
 - RCE 0 = 2 hybrids (layer 1)
 - RCE 1 = 2 hybrids (layer 2)
 - RCE 2 = 2 hybrids (layer 3)
 - RCE 3 = 3 hybrids (3 from layer 4)
 - RCE 4 = 3 hybrids (1 from layer 4 / 2 from layer 5)
 - RCE 5 = 3 hybrids (2 from layer 5 / 1 from layer 6)
 - RCE 6 = 3 hybrids (3 from layer 6)
- RCE 7 on COB 0 manages all 10 FE Boards
 - Configuration and status messages
 - Clock and trigger distribution to FE boards & hybrids
- RCE 7 on COB 1 has does not have an SVT specific purpose


SLAO

SVT Trigger Interface

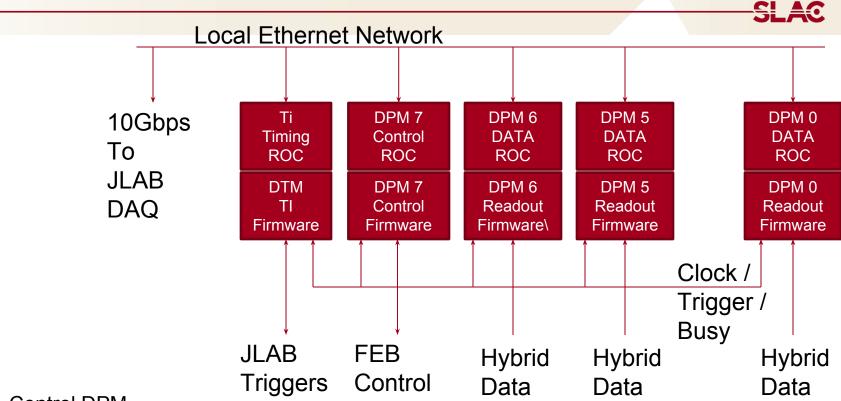

- Replicates portion of JLAB TI Board
- Quad optics and PLL exist on RTM
- TI firmware implemented in RCE FPGA
- Fully allocated available signals between RTM and DTM
 - 1 high speed pair for trigger & SYNC
 - 1 low speed pair for SYNC
 - 2 low speed pairs for PLL SPI and Reset signals
 - 3 low speed pairs for PLL generated clocks (250/125/62.5 Mhz)

SVT Trigger Distribution

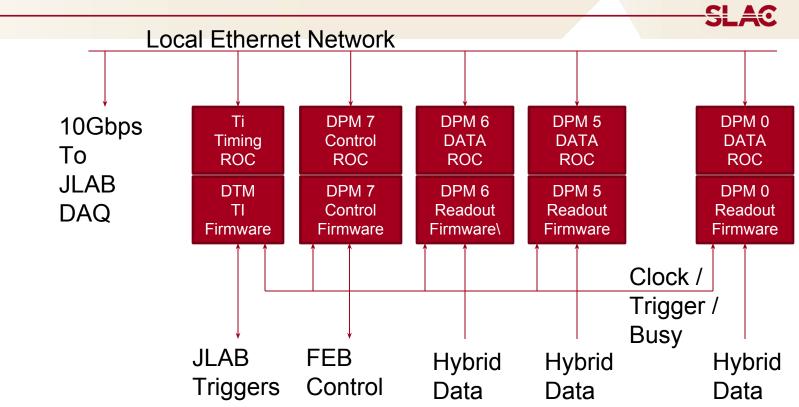

- DTM FPGA has ability to distribute clock and trigger to DPMs
 - Clock and trigger wired as fan out to DPMs
 - Individual feedback signals from each DPM
- 1 pair for clock fan out
- 1 pair for trigger fan out
 - 125Mhz serial protocol transfers 8-bit codes (easily expanded to longer words)
 - Used to distribute event codes to DPMs
 - System clock sync, APV25 sync & JLAB triggers
- 1 pair for trigger data distribution
 - Event and block data
- 1 pair per DPM for feedback
 - Readout and trigger acknowledge
 - Busy

Front End Timing Distribution

- Control DPM forwards timing information to front end boards over PGP
 - Clock encoded into serial data stream which the front end board recovers
 - Fixed latency path for encoded PLL reset and trigger signals


ROC Instances On SVT

Data DPM


- Data processing ROC application
- Builds event record for 2 or 3 hybrids
 - APV25 ADC Data
 - Hybrid environmental data
- Operates as slave when interfacing to TI firmware
- Clock, trigger & event data received over COB signals
- Busy and acknowledge passed over COB signals

ROC Instances On SVT

- Control DPM
 - FEB control and configuration
 - Formats FEB environmental event data
 - Clock, trigger & event data received over COB signals
 - Busy and acknowledge passed over COB signals

ROC Instances On SVT

- Timing DTM
 - Dataless ROC instances for state transition control
 - Clock, trigger & event sent received over COB signals
 - Busy and acknowledge received over COB signals

Planned SVT DAQ Updates

- Add new layer 0 Hybrids
- Update firmware to latest build system and common libraries
- Add bootloader image to FEB, enable firmware downloads
- Update control software to python based Rogue platform
- Move from multiple ROCs (one per RCE) to two ROCs on linux server (one ROC per COB)
- Upgrade FEB Test Stand

Updated SVT RCE Allocation

- Two COBs utilized in the SVT readout system
 - 16 RCEs On DPMs (2 per DPM, 4 DPMs per COB)
 - 2 RCEs on DTMs (1 per DTM, 1 DTM per COB)
- 7 RCEs on each COB process data from ½ SVT
 - 19 Hybrids total per COB
 - RCE 0 = 3 hybrids (layer 0 + Layer 1)
 - RCE 1 = 2 hybrids (layer 2)
 - RCE 2 = 2 hybrids (layer 3)
 - RCE 3 = 3 hybrids (3 from layer 4)
 - RCE 4 = 3 hybrids (1 from layer 4 / 2 from layer 5)
 - RCE 5 = 3 hybrids (2 from layer 5 / 1 from layer 6)
 - RCE 6 = 3 hybrids (3 from layer 6)
- RCE 7 on COB 0 manages all 10 FE Boards
 - Configuration and status messages
 - Clock and trigger distribution to FE boards & hybrids
- RCE 7 on COB 1 has does not have an SVT specific purpose

SI AO

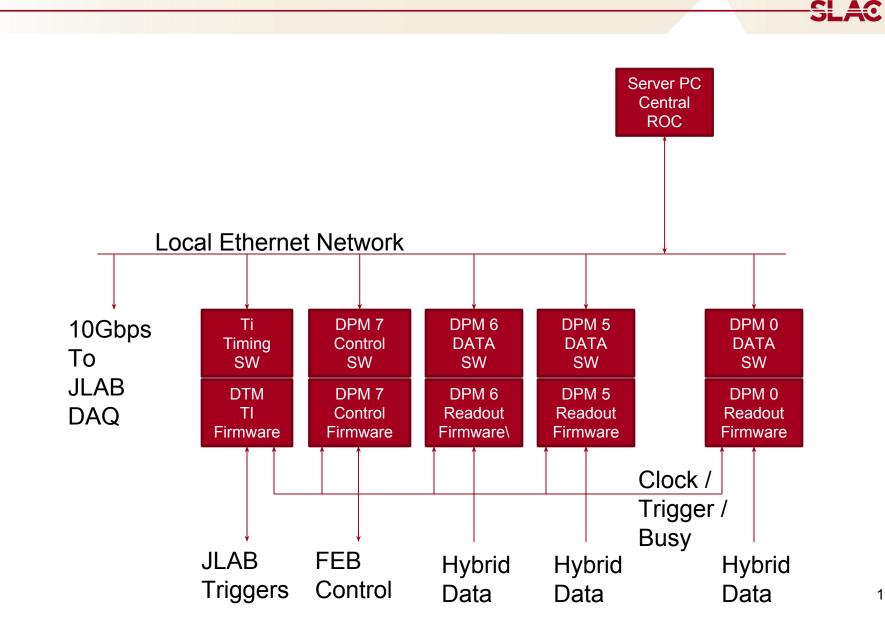
The TID-AIR-ES firmware build environment and common libraries have changed a lot since HPS was deployed

- SVN -> GIT
- Consolidated common libraries -> SURF
 - Also lots of fixes and updates in these libraries
- New firmware build system -> Ruckus

Upgrading the HPS firmware to use all of this is necessary to maintain our ability to build it and patch it.

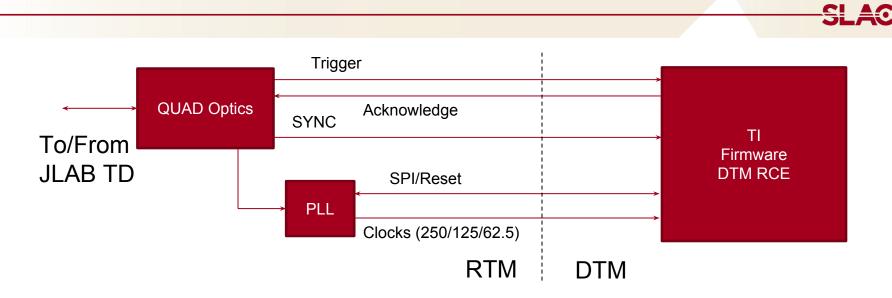
Status - Done. All firmware images have been successfully built using the latest and greatest code.

FEB Firmware - Bootloader


- Add a bootloader image to the FEB PROM
- We've had the ability to reflash over PGP, but it was dangerous
 - If something goes wrong, need physical access to JTAG connector at the flange
- Bootloader solves this
 - Two images stored in PROM
 - A stripped down FEB image that is proven to work loads first after powerup.
 - After 10 seconds, it loads the "real" FEB image
 - Can disable this via register access
 - Only the "real" FEB image can be rewritten over PGP
- Status done. Installed during September JLAB trip

- TID-AIR-ES has a new software framework for communicating with FPGAs - Rogue
- Replacement for old C++ GenDaq/XmlDaq framework
- Rogue features
 - Split C++/Python architecture
 - Most development is done in python
 - Can drop into C++ when performance is critical
 - Built in methods for inter-process coordination
- Status
 - Device configuration code has been rewritten in Rogue.
 - Can use Rogue to configure a FEB and Hybrid on the Test Stand
 - Still need work to deploy on RCE Crate

Move from One ROC/RCE to One ROC/COB


- Existing system has some stability issues at startup and during running
- All ROC instances must constantly stay in SYNC, occasionally during runs one or more ROC instances will freeze up
- Reducing the number of ROC instances will increase stability
- New structure will have a single ROC instances per COB, hosted on a Linux server.
 - ROC on the linux server will executate state transitions through remote python calls to pyrogue running on each RCE
 - Considering direct communication between single ROC and RCE firmware
 - Run data (7 RCEs) and environmental data (1 RCE) will be sent from the RCEs to an event builder on the linux server
 - RSSI firmware to software reliable transfer
 - Event builder will format frames and pass to local ROC data interface

Move from One ROC/RCE to One ROC/COB

19

Update Trigger Firmware

- The TI firmware has changed, so we need to integrate the new TI logic from JLab into the DTM firmware
 - Successfully accomplished for previous run
- TI firmware is implemented in ISE schematic
 - Export to VHDL and make minor edits to enable compile in Vivado
 - Update block rams, etc

Old FEB Test Stand

- FEB connected to a PC via standard PGP card
- FEB loaded with special firmware
 - RCE data processing blocks in FEB
 - 3.125 Gbps PGP speed instead of 2.5 Gbps on CTRL link
 - Data PGP links not used, everything over CTRL link.
- Issues
 - The FEB + RCE logic grew to the point that it no longer fit on the FEB FPGA
 - Would prefer for the FEB Test Stand to run the same firmware as SVT FEBs.

KCU1500 PCIe card from Xilinx

- General purpose PCIe card with huge FPGA and 8 high speed links
- TID-AIR-ES no longer maintains a custom PGP card.
 We use this instead.
- Can fit all the RCE ControlDpm and DataDpm firmware.
- Can mimic the RCE enough to attach a FEB with standard firmware directly to a PC
- Upgrading the FEB Test Stand to do this

SLAC

Once the FEB Test Stand is working, we will need to deploy Rogue based HPS software on the RCE Crate*

- Rogue will compile and run on the RCE nodes
- Need to configure bridge to CODA ROC through shared memory
- More work is needed to manage all the Rogue instances on each of the RCE nodes.
- *Also investigating having Rogue instance on server communicate directly to RCE FPGA over Ethernet

Currently in the process of spinning up an RCE Crate at SLAC

- Mimic the JLab SVT DAQ setup
- 1 COB+RTM, 1-2 FEBs and 1-8 Hybrids
- RTM and COB shipped from JLab
- Cameron and Omar helping to set up
- Rogue installed and running
- Existing DAQ software running

FEB Hardware Status

- 15 FEBs were made
- 1 was a lemon and never worked
- 10 were deployed in the SVT
- 4 Remaining
- We have 2 backup FEBs at SLAC
 - Can't get DATA links working on FEB#08
 - Replacing oscillator might fix it
 - FEB#10 seems ok
 - FEB#09 and FEB#03 need to be tested

Thank You!