Design of the LCLS-2 Data Systems

August 30th 2017 Smoky Mountains Computational Sciences and Engineering Conference

Amedeo Perazzo LCLS Controls & Data Systems Division Director

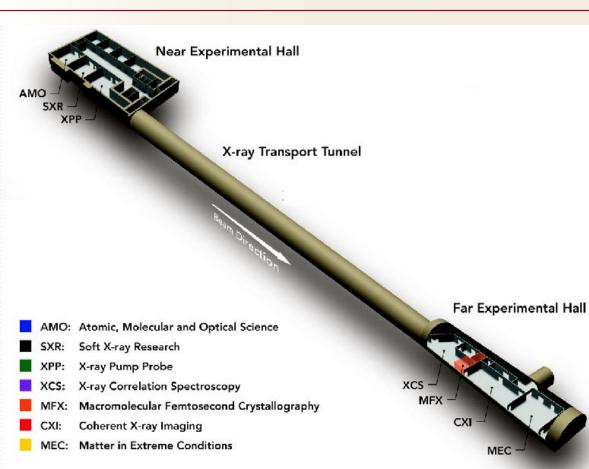
- LCLS instruments and science case
- Guiding principles for the buildout of the LCLS-II data system
- Projections
- Design

LCLS Science Case

BIBBBBB

Electron Energy: 2.5 – 14.7 GeV

Injector at 2-km point


Existing 1/3 Linac (1 km) (with modifications)

Electron Transfer Line (340 m) 🚟

X-ray Transport Line (200 m) Undulator (130 m) – Near Experiment Hall (NEH)

Far Experiment Hall (FEH)

LCLS Instruments

SLAC

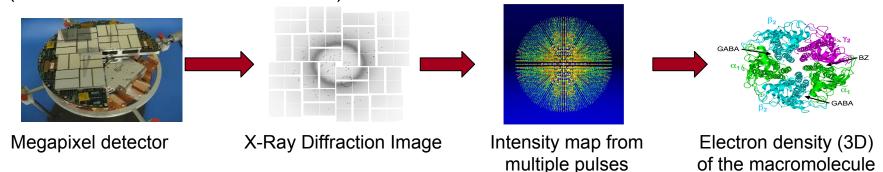
LCLS has already had a significant impact on many areas of science, including:

- → Resolving the structures of macromolecular protein complexes that were previously inaccessible
- → Capturing bond formation in the elusive transition-state of a chemical reaction
- → Revealing the behavior of atoms and molecules in the presence of strong fields
- Probing extreme states of matter

Data Analytics for high repetition rate Free Electron Lasers

FEL data challenge:

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis


SLAC

LCLS-II will increase **data throughput by three orders of magnitude** by 2025, creating an exceptional scientific computing challenge

LCLS-II represents SLAC's largest data challenge by far

Example of LCLS Data Analytics: The Nanocrystallography Pipeline

Serial Femtosecond Crystallography (SFX, or nanocrystallography): huge benefits to the study of **biological macromolecules**, including the availability of femtosecond time resolution and the avoidance of radiation damage under physiological conditions ("**diffraction-before-destruction**")

Well understood computing requirements

Significant fraction of LCLS experiments (~90%) use large area imaging detectors Easy to scale: processing needs are linear with the number of frames

Must extrapolate from 120Hz (today) to 5-10 kHz (2022) to >50 kHz (2026)

Guiding Principles

BIOSE

Guiding Principles and Priorities

SLAC

Key aspects LCLS-II data system:

- 1. Fast feedback
- 2. 24/7 availability
- 3. Short burst
- 4. Storage
- 5. Throughput
- Speed and flexibility of development cycle is critical

Hardware design guiding principles Performance Reliability Fase of use Software design guiding principles Flexibility **User friendliness** Performance

When conflicts arise go back to the top guiding principle

Make full use of national capabilities

LCLS-II will require access to High End Computing Facilities (NERSC and LCF) for highest demand experiments (exascale)

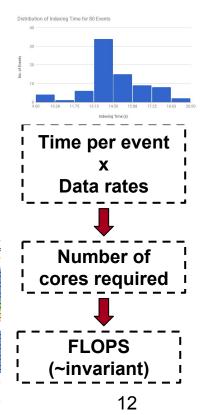
SLAC

Photon Science Speedway

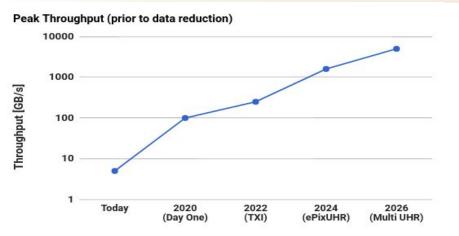
Stream science data files on-the-fly from the LCLS beamlines to the NERSC supercomputers via ESnet

Very positive partnership to date, informing our future strategy

Projections


BARACE (

Process for determining future projections


Includes:

- 1. Detector rates for each instrument
- 2. **Distribution of experiments** across instruments (as function of time, ie as more instruments are commissioned)
- 3. Typical uptimes (by instruments)
- 4. Data reduction capabilities based on the experimental techniques
- 5. Algorithm **processing times** for each experimental technique

Undulator	Instrument	t	Endstatio	n	Technique		Detector		Detector Size	Detector Rate (Hz)	Data Rate (aggregate) (GB/s)	Ultilization Factor (0-1)	Data Reduction Type (1st Cut)		DR Factor (1st cut)	Data Reduction Type (Optimistic))	DR Factor (Optimistic)	FY20 Q2	FY20 Q3	FY20 Q4	FY21 Q1	FY21 Q2	FY21 Q3
SXU -	NEH 1.1	*	DREAM	*	COLTRIMS	Ŧ	Digitizer	*	800000	100000	160.0	0.75	Zero suppression	*	0.020	Peak Finding 👻	0.0020	1.00	1.00	0.50	0.25	0.25	0.25
SXU -	NEH 1.1	٣	DREAM	٣	Time of Flight	٣	Digitizer	٣	1000000	100000	200.0	0.75	Zero suppression	٠	0.020	Peak Finding 🔻	0.0020			0.13	0.13	0.13	0.06
SXU -	NEH 1.1	Ŧ	LAMP	٣	Time of Flight	*	Digitizer	٣	1000000	100000	200.0	0.75	Zero suppression	٠	0.020	Peak Finding 🔻	0.0020			0.13	0.13	0.13	0.06
SXU -	NEH 1.1	*	LAMP	٠	Imaging	٣	SXR Imag. + Digi.	*	4000000	10000	82.0	0.45	Veto	٠	0.100	N.A	0.1000						0.13
SXU -	NEH 2.2	Ŧ	LJE	٠	XAS / XES	Ŧ	TES	*	1000	100000	20.0	0.60	Zero suppression	*	0.100	Binning *	0.0000						
SXU -	NEH 2.2	٣	LJE	٠	XAS / XES	Ŧ	TES	٣	10000	100000	200.0	0.60	Zero suppression	٣	0.100	Binning *	0.0000						-
SXU -	NEH 2.2	*	LJE	٣	XAS / XES	*	RIXS-ccd	*	4096	1000	0.0	0.60	N.A.	*	1.000	Accumulating *	0.0010			0.25	0.50	0.25	0.25
SXU -	NEH 2.2	Ŧ	RIXS	Ŧ	IXS / RIXS	*	RIXS-ccd	•	4096	1000	0.0	0.60	N.A.	٠	1.000	Accumulating -	0.0010					0.13	0.13
SXU -	NEH 2.2	Ŧ	RIXS	٣	XRD / RXRD	Ŧ	SXR Imaging	٠	1000000	10000	20.0	0.60	ROI	Ŧ	0.100	Accumulating *	0.0001					0.06	0.06
SXU -	NEH 2.2	٠	RIXS	*	XPCS	٠	SXR Imaging	*	1000000	10000	20.0	0.60	Compression	*	0.500	-	0.1000					0.06	0.06
SXU -	NEH 1.2	Ŧ		Ŧ	X-ray/X-ray	Ŧ	SXR Imaging	*	1000000	10000	20.0	0.30	ROI	*	0.100	Binning 👻	0.0001						
SXU +	NEH 1.2	*	222	٠	Imaging	٠	epix100-HR + Digi.	+	4000000	5000	42.0	0.45	Veto	*	0.100	N.A. *	0.1000						
SXU -	NEH 1.2	Ŧ		v	XAS / XES	Ŧ	RIXS-ccd	Ŧ	4096	1000	0.0	0.60	N.A.	Ŧ	1.000	Accumulating *	0.0010						

Scale of the LCLS-II Data Challenge: Throughput and Processing Projections

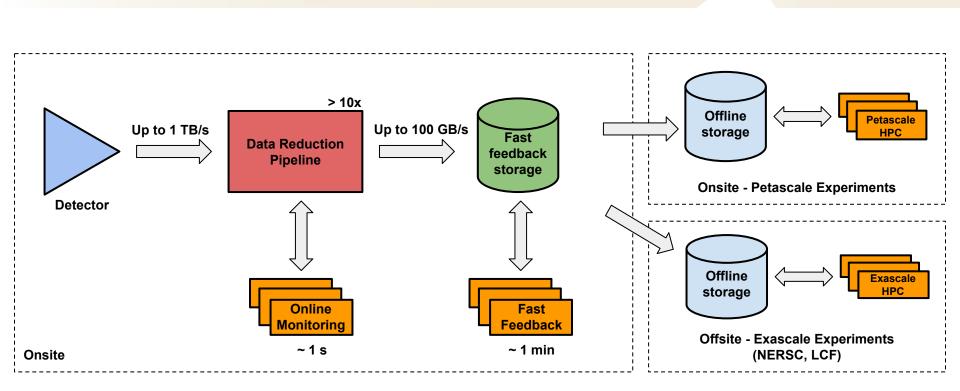
Processing Projections Nanocrystallography SPI 1000 Processing [PFLOPS] 100 10 0.1 0.01 LCLS-II (2022) Today LCLS-II (2024) LCLS-II (2026) Multi UHR EpixUHR TXI

Example data rate for LCLS-II (early science)

- 1 x 4 Mpixel detector @ 5 kHz = 40 GB/s
- 100K points fast digitizers @ 100kHz = 20 GB/s
- Distributed diagnostics 1-10 GB/s range

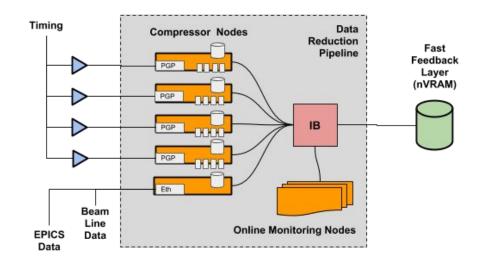
Example LCLS-II and LCLS-II-HE (mature facility)

2 planes x 4 Mpixel ePixUHR @ 100 kHz = 1.6 TB/s


More sophisticated algorithms currently under development (e.g., for single particle imaging) will require exascale machines

Throughput requirements are extremely challenging: data reduction needed

SELECCO.

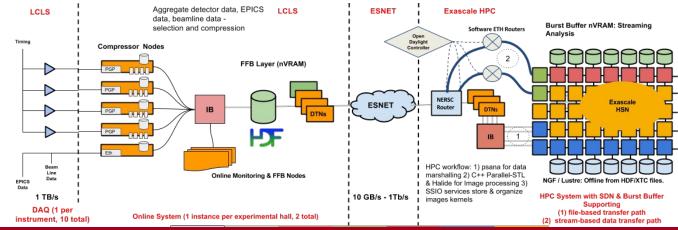

LCLS-II Data Flow

SLAC

Data Reduction Pipeline

- Besides cost, there are significant risks by not adopting on-the-fly data reduction
 - Inability to move the data to HEC, system complexity (robustness, intermittent failures)
- Developing toolbox of techniques (compression, feature extraction, vetoing) to run on a Data Reduction Pipeline
- Significant R&D effort, both engineering (throughput, heterogeneous architectures) and scientific (real time analysis)

SL AO


Without on-the-fly data reduction we would face unsustainable hardware costs by 2026

ExaFEL:

Data Analytics at the Exascale for Free Electron Lasers

Application Project within Exascale Computing Project (ECP)

High data throughput experiments	LCLS data analysis framework	Infrastructure
Algorithmic improvements and ray tracing - Example test-cases of Serial Femtosecond Crystallography, and Single Particle Imaging	Porting LCLS code to supercomputer architecture, allow scaling from hundreds of cores (now) to hundred of thousands of cores	Data flow from SLAC to NERSC over ESnet

We need to build from this very important early engagement with ASCR

From Terascale to Exascale

Number of Diffraction

Analyzed

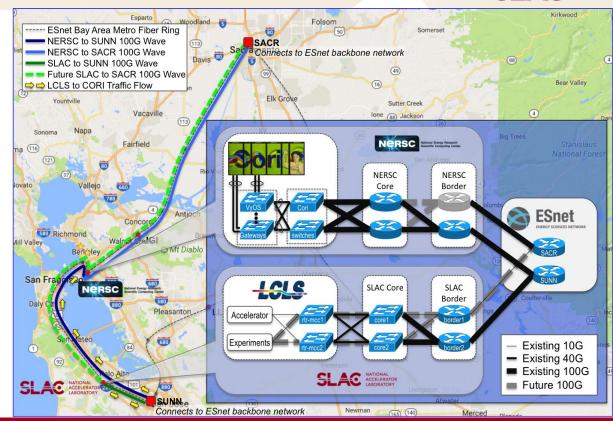
Patterns

M-TIP: Single Particle Imaging of total images Ray tracing: Increased accuracy 10% 80% 70% Enables de novo phasing (for atomic structures with no known 40% analogues) 54% % 20% Computational algorithms IOTA Present IOTA: Wider parameter search; Higher acceptance rate for diffraction images CCTBX: Exascale Present-day Petascale modeling of Terascale Bragg spots

Analytical Detail and Scientific Payoff

Exascale vastly expands the experimental repertoire and computational toolkit

 $d_{hb}^{*}(0)$


Κ

Picture credit: Kroon-Batenburg et al (2015) Acta Cryst D71:1799

The Role of ESnet

By 2022 we'll need > **200-Gb/s** capabilities between the LCLS beamlines and ESnet

By 2026 we'll require **Tb/s** capabilities

SLAC

ESnet will be instrumental in providing LCLS-II access to exascale

DOE High End Computing (HEC) Facilities will play a critical role, complemented by dedicated, local systems

LCLS-II will require:

- Access to HEC Facilities
 - For highest demand experiments (exascale)
- **Dedicated**, **local** capabilities
 - Data Reduction Pipeline: Data compression,

feature extraction, vetoing (trigger)

• Fast feedback: Real time analysis

A viable approach will have to combine local and complex-wide facilities

SLAC