Planning for the LCLS-2 System: Data System Design and Benchmarks

July 25th 2017 Data Benchmarking Workshop

Amedeo Perazzo LCLS Controls & Data Systems Division Director

SLAC

LCLS science case

Guiding principles for the buildout of the LCLS-II data system Benchmarks and projections

Design

LCLS Science Case

Science Requirement: Data Analytics for high repetition rate Free Electron Lasers SLAC

FEL data challenge:

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis

LCLS-II will increase **data throughput by three orders of magnitude** by 2025, creating an exceptional scientific computing challenge

LCLS-II represents SLAC's largest data challenge by far

Example of LCLS Data Analytics: The Nanocrystallography Pipeline

Serial Femtosecond Crystallography (SFX, or nanocrystallography): huge benefits to the study of biological macromolecules, including the availability of femtosecond time resolution and the avoidance of radiation damage under physiological conditions ("diffraction-before-destruction")

Well understood computing requirements

Significant fraction of LCLS experiments (~90%) use large area imaging detectors Easy to scale: processing needs are linear with the number of frames

Must extrapolate from 120Hz (today) to 5-10 kHz (2022) to >50 kHz (2026)

Guiding Principles

Key aspects LCLS-II data system:

- 1. Fast feedback
- 2. 24/7 availability
- 3. Short burst
- 4. Storage
- 5. Throughput
- Speed and flexibility of development cycle is critical

Hardware design guiding principles

 Performance

 Reliability

Ease of use

Software design guiding principles

Flexibility User friendliness Performance

When conflicts arise go back to the top guiding principle

Make full use of national capabilities

LCLS-II will require access to High End Computing Facilities (NERSC and LCF) for highest demand experiments (exascale)

SLAC

Photon Science Speedway

Stream science data files on-the-fly from the LCLS beamlines to the NERSC supercomputers via ESnet

Very positive partnership to date, informing our future strategy

Benchmarks and projections

Process for determining future projections

Includes:

- 1. **Detector rates** for each instrument
- 2. **Distribution of experiments** across instruments (as function of time, ie as more instruments are commissioned)

SLAC

- 3. Typical **uptimes** (by instruments)
- 4. **Data reduction** capabilities based on the experimental techniques
- 5. Algorithm processing times for each experimental technique

Undulator	Instrument	Endstatio	n	Technique		Detector		Detector Size	Detector Rate (Hz)	Data Rate (aggregate) (GB/s)	Ultilization Factor (0-1)	Data Reduction Type (1st Cut)		DR Factor (1st cut)	Data Reduction Type (Optimistic))	DR Fa (Optim	ctor stic)	FY20 Q1	FY20 Q2	FY20 Q3	FY20 Q4	FY21 Q1	FY21 Q2	FY21 Q3	-
SXU -	NEH 1.1 -	DREAM	*	COLTRIMS	×	Digitizer	*	800000	100000	160.0	0.75	Zero suppression	*	0.020	Peak Finding	0.00	20		1.00	1.00	0.50	0.25	0.25	0.25	l
SXU -	NEH 1.1 -	DREAM	*	Time of Flight	*	Digitizer	*	1000000	100000	200.0	0.75	Zero suppression	*	0.020	Peak Finding	0.00	20				0.13	0.13	0.13	0.06	
SXU -	NEH 1.1 *	LAMP	v	Time of Flight	Ŧ	Digitizer	Ŧ	1000000	100000	200.0	0.75	Zero suppression	*	0.020	Peak Finding	0.00	20				0.13	0.13	0.13	0.06	
SXU -	NEH 1.1 *	LAMP	*	Imaging	٣	SXR Imag. + Digi.	*	4000000	10000	82.0	0.45	Veto	٠	0.100	N.A	0.10	00							0.13	
SXU -	NEH 2.2 -	LJE	*	XAS / XES	*	TES	*	1000	100000	20.0	0.60	Zero suppression	*	0.100	Binning -	0.00	00								
SXU -	NEH 2.2 *	LJE		XAS / XES	*	TES	*	10000	100000	200.0	0.60	Zero suppression	*	0.100	Binning *	0.00	00								Ĩ
SXU -	NEH 2.2 *	LJE	*	XAS / XES	*	RIXS-ccd	*	4096	1000	0.0	0.60	N.A.	*	1.000	Accumulating *	0.00	10				0.25	0.50	0.25	0.25	
SXU -	NEH 2.2 -	RIXS		IXS / RIXS		RIXS-ccd	Ŧ	4096	1000	0.0	0.60	N.A.	*	1.000	Accumulating -	0.00	10						0.13	0.13	
SXU -	NEH 2.2 -	RIXS	Ŧ	XRD / RXRD	Ŧ	SXR Imaging	*	1000000	10000	20.0	0.60	ROI	*	0.100	Accumulating -	0.00)1						0.06	0.06	
SXU -	NEH 2.2 -	RIXS	*	XPCS	Ŧ	SXR Imaging	*	1000000	10000	20.0	0.60	Compression	-	0.500	-	0.10	00						0.06	0.06	
SXU -	NEH 1.2 -		Ŧ	X-ray/X-ray	Ŧ	SXR Imaging	-	1000000	10000	20.0	0.30	ROI	*	0.100	Binning -	0.00)1								Ī
SXU 👻	NEH 1.2 -	222	÷	Imaging	¥	epix100-HR + Digi.	*	4000000	5000	42.0	0.45	Veto	*	0.100	N.A.	0.10	00								
SXU -	NEH 1.2 -		*	XAS / XES	*	RIXS-ccd	Ŧ	4096	1000	0.0	0.60	N.A.	*	1.000	Accumulating *	0.00	10								

Note on how processing needs are calculated

Example: indexing time per event for nanocrystallography

SLAC

Scale of the LCLS-II Data Challenge: Throughput and Processing Projections

Processing Projections Peak Throughput (prior to data reduction) 10000 Nanocrystallography SPI 1000 1000 Processing [PFLOPS] 100 Throughput [GB/s] 10 100 10 0.1 0.01 LCLS-II (2022) Today LCLS-II (2024) LCLS-II (2026) 2022 2024 2026 EpixUHR Multi UHR Today 2020 TXI (Day One) (TXI) (ePixUHR) (Multi UHR)

Example data rate for LCLS-II (early science)

- 1 x 4 Mpixel detector @ 5 kHz = 40 GB/s
- 100K points fast digitizers @ 100kHz = 20 GB/s
- Distributed diagnostics 1-10 GB/s range

Example LCLS-II and LCLS-II-HE (mature facility)

2 planes x 4 Mpixel ePixUHR @ 100 kHz = 1.6 TB/s

More sophisticated algorithms currently under development (e.g., for single particle imaging) will require exascale machines

<u>SLAC</u>

Throughput requirements are extremely challenging: data reduction needed

Projected Networking and Storage Requirements for SLAC will soon be dominated by LCLS

SLAC

LCLS-II will dominate SLAC storage requirements by 2022-2024

We need to find new networking solutions with ESnet beyond 2024

This assumes 10x data reduction is achieved

Design

STOTTON.

LCLS-II Data Flow

SLAC

Data Reduction Pipeline

- Besides cost, there are significant risks by not adopting on-the-fly data reduction
 - Inability to move the data to HEC, system complexity (robustness, intermittent failures)

SLAC

- Developing toolbox of techniques (compression, feature extraction, vetoing) to run on a Data Reduction Pipeline
- Significant R&D effort, both engineering (throughput, heterogeneous architectures) and scientific (real time analysis)

Without on-the-fly data reduction we would face unsustainable hardware costs by 2026

ExaFEL: Data Analytics at the Exascale for Free Electron Lasers

\$10M Application Project within Exascale Computing Project (DOE/ASCR)

SLAC

High data throughput experiments	LCLS data analysis framework	Infrastructure
Algorithmic improvements and ray tracing - Example test-cases of Serial Femtosecond Crystallography, and Single Particle Imaging	Porting LCLS code to supercomputer architecture, allow scaling from hundreds of cores (now) to hundred of thousands of cores	Data flow from SLAC to NERSC over ESnet

We need to build from this very important early engagement with ASCR

DOE High End Computing (HEC) Facilities will play a critical role, complemented by dedicated, local systems

LCLS-II will require:

- Access to HEC Facilities
 - For highest demand experiments (exascale)
- **Dedicated**, **local** capabilities
 - Data Reduction Pipeline: Data compression, feature extraction, real time analysis
 - Science Data Facility: Storage and analysis for standard experiments

Operational necessity for local & dedicated capabilities:

- Real time (< 1s) analysis
- **Data reduction** (before sending to HEC over ESnet)
- Unacceptable use of HEC (immediate burst jobs)
- Coordinated outages between HEC and experimental facilities not viable if HEC required for all experiments

A viable approach will have to combine local and complex-wide facilities