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LCLS Experimental Floor
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Near Experimental Hall

Far Experimental Hall

AMO: Atomic, Molecular and Optical Science
SXR: Soft X-ray Research

XPP: X-ray Pump Probe

XCS: X-ray Correlation Spectroscopy

MFX: Macromolecular Femtosecond Crystallography
CXl:  Coherent X-ray Imaging

MEC: Matter in Extreme Conditions



LCLS Parameters

X-Ray range 250 to 11,300 eV

Pulse length <5-500fs

Pulse energy [ ~4mJ
)

Repetition

Rate 120 Hz




LCLS Physics

LCLS has already had a significant impact on many areas of science,

including:
e Resolving the structures of macromolecular protein complexes that were previously
inaccessible;

e Capturing bond formation in the elusive transition-state of a chemical reaction;
e Revealing the behavior of atoms and molecules in the presence of strong fields;
e Probing extreme states of matter
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LCLS Data Challenges

From the beginning LCLS data systems group faced these challenges:
Ability to readout, event build and store multi GB/s data streams
Capability for experimenters to analyze data on-the-fly (real-time)
Flexibility to accommodate new user supplied equipment

Capacity to store and analyze PB scale data sets

Changing analysis software/algorithms implemented by non-expert users
(weekly!)
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LCLS currently handles well the first two of the three Vs of data
challenges: volume, velocity, variety
e The variety of analysis requirements due to the heterogeneity of
experiments is by far the main challenge in the LCLS data analysis arena
right now
e Each experiment requires its own setup (detectors, geometry, etc) and
its own intelligence in the analysis
e Must provide easier, more powerful tools to lower the threshold and
provide all groups equal opportunity



LCLS Data Flow: Current
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Current LCLS Data Systems Architecture
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Web Portal Snapshot: File manager
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Data Collection Statistics (Oct 2009 - May 2014)

As of the beginning of May 2014
Nearly 400 experiments and 500 individual users
Over 6.7 PB of data, 140,000 DAQ runs, and 332,000 experimental files
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LCLS Data Strategy: Drivers
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e LCLS-Il Upgrade
o The high repetition rate (1-MHz) and, above all, the potentially very high data
throughput (100GB/s) generated by LCLS-II will require a major upgrade of the
data acquisition system and increased data processing capabilities
e Fast feedback
o Experience has shown that a capable real-time analysis is critical to the users’

ability to take informed decisions during an LCLS experiment
m Powerful fast feedback (~ minute or faster timescales) capabilities reduce the time required to complete
the experiment, improve the overall quality of the data, and increase the success rate of experimentals

e Time to science
o Sophisticated analysis frameworks can reduce significantly the time between
experiment and publication, improving productivity LCLS science community
e No user left behind
o Most of the advanced algorithms for analysis of the LCLS science data have been
developed by external groups with enough resources to dedicate to a leading edge

computing effort
m  Smaller groups with good ideas may be hindered in their ability to conduct science by not having access
to these advanced algorithms
m LCLS support for externally developed algorithms and, possibly, development of in-house algorithms for
some specific science domains, would alleviate this problem 11



LCLS Data Strategy: Approach

A 7o

(]

.
—

Strategy organized into a three-pronged approach aligned with the E’;‘Pe:’mental
following areas: ardware

e Infrastructure
_ _ Infrastructure
o Includes the systems for processing and managing the Get the Data

S

LCLS data: computing farm, disk and tape storage, data
movers, experiment portal /
e Tools
o Includes all the core software needed by the LCLS users Tools
to access and analyse their data: build tools, Handle the |
documentation, version control, visualization, calibration, Data
data persistency and basic data analysis algorithms like
fitting and filtering \
e Algorithms .
_ Algorithms
o Includes the adoption, development and support of Make Sense of |
advanced algorithms specific to the various LCLS the Data
scientific areas: better crystallography pipelines, diffuse
scattering, single particle imaging, etc Sclentific

Insight 12



Infrastructure Challenges (1)

Data Acquisition
o Current online, network based, event builder will stop working at high rates
o Reading out images at full rate will not be feasible
Real Time Analysis
o LCLS experience has shown that the most effective way to perform real time
analysis is allowing users to run their code against the data on disk (fast feedback
storage layer)
o Existing spindle-based storage technologies are too slow for the LCLS-I| fast
feedback layer
Data Storage
o SLAC tape archive system is approaching limits in overall storage capacity and

throughput
m Such limits are already observed at LCLS when archiving data from on-going
experiments while serving concurrent user requests to restore files from tape
Data Management
o Some aspects of the current system, such as checksum calculations, HPSS
interface, and lack of prioritization, will become limitations at higher data volumes
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Infrastructure Challenges (2)

e Data Processing
o We expect that LCLS-II will require peta to exascale HPC
o Deploying and maintaining very large processing capacity at SLAC would require a
significant increase in the capabilities of the existing LCLS and/or SLAC IT groups
e Data Network
o SLAC recently upgraded its connection to ESNET from 10Gb/s to 100Gb/s
m Primary reason for upgrading this link is to gain the ability to offload part of
the LCLS science data processing to NERSC while keeping up with the DAQ
o The 100Gb/s link will need to be upgraded to 1 Tb/s for LCLS-II
e Data Format
o The translation step from XTC (DAQ format) to HDF5 (users format) will become a
bottleneck in the future and LCLS-II should adopt a single data format
o HDF5 de-facto standard for storing science data at light source facilities
m In order to effectively replace XTC in LCLS, a couple of critical features are
required: ability to read while writing, ability to consolidate multiple writers into
a consistent virtual data set

14



LCLS-Il Data Throughput, Data Storage and Data
Processing Estimates

Examples LCLS-Il 2020:

o 1 x 16 Mpixel ePix @ 360 Hz = 12 GB/s

100K points fast digitizers @ 100kHz = 20 GB/s

@)
o 2 x4 Mpixel ePix @ 5 kHz = 80 GB/s
o Distributed diagnostics 1-10 GB/s range

Example LCLS-II 2025

o 3 beamlines x 2 x 4 Mpixel ePix @ 100 kHz = 4.8 TB/s

Data parameters scaling between LCLS-l and LCLS-II

Parameter
Average throughput
Peak throughput
Peak Processing

Data Storage

LCLS-I
0.1-1GB/s
5 GB/s
50 TFLOPS

5 PB

LCLS-Il 2020
2-20GB/s
100 GB/s
1 PFLOPS

100 PB

LCLS-Il 2025
2GB/s-1.2TB/s
4.8 TB/s
60 PFLOPS

6 EB



LCLS-Il Data Analysis: Onsite and Offsite Components
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e Data analysis strategy motivated by (1) very high data throughput generated by LCLS-II, (2) need to provide
powerful fast feedback capabilities, (3) desire to reduce time between experiment and publication, and (4)
need for the facility to develop algorithms for XFEL science and support externally developed ones

e Software - In-house: core framework, tools and
core algorithms
Collaborations: advanced algorithms (e.g. IOTA,
ray tracing, diffuse scattering, M-TIP, Al/ML) -
Stanford CS, LBL/CAMERA, LBL/MBIB,
SLAC/PULSE, PNNL, LANL

2. Communicate Problem
to Algorithmic Experts . ' n' c
a T

—_— A S e 1. Ideentify Technical or
Scientific Problem
3. Publish Solution,
’ Preliminary implementation |
. 4. Provide Easy4o-Use ' '
‘]

; AM Implementation

CFEL

User Group 1

N
m User G'O“P :
Partner
Institutions
Beforn & After: Direct
Contact/'Collsborstion

e Infrastructure - Onsite: data reduction pipeline and

real time analysis, 1-10 PFLOPS processing, 100

petabyte storage
Offsite: NERSC supercomputers (1 EFLOPS)

NERSC collaboration avoids need to
scale the HPC needs to the highest
demand (exascale) experiments
while maintaining critical capabilities
at SLAC
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Data Analytics at the Exascale for Free Electron Lasers
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$10M over 4 years: 40% SLAC (LCLS, CS), 20% LANL, 40% LBL (CAMERA, MBIB, NERSC)

High data throughput experiments

Single Particle Imaging

LCLS data analysis framework

Infrastructure

Algorithmic improvement with IOTA
(Integration Optimization, Triage, and
Analysis) and ray tracing - Use
example test-case of Serial
Femtosecond Crystallography

Algorithmic advances with
M-TIP (Multi-Tiered
Iterative Phasing)

Porting psana to supercomputer
architecture, change parallelization
technology to allow scaling from
hundreds of cores (now) to hundred of
thousands of cores

Data flow from SLAC to NERSC over
ESnet

Sauter, Brewster - LBNL/MBIB

Zwart, Donatelli, Sethian -

Aiken - Stanford/SLAC CS, Shipman -
LANL, O’Grady - SLAC/LCLS

Perazzo - SLAC/LCLS, Skinner -
LBNL/NERSC, Guok - LBNL/ESnet

Data Reduction Pipeline

Ondine System
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(1 Instance per instrument, 8 total)
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ESNET "

110 GB/s - 1TB/s Images kemels

Exascale HPC

MPC workflow: 1) psana for data
marshaling 2) C++ Parallel-STL
& Halide for Image procassing 3)
SSI0 services store & organize

NGF | Lustre: Offline from HDF/XTC files.

HPC System with SDN & Burst Buffer
Supporting
(1) file-based transfer path
(2) stream-based data transfer path




Why It’s Important
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e Powerful fast feedback during high throughput experiments

e Enable broader user base, and short time to publication

e Step change in advanced algorithms development capabilities for SFX, diffuse
scattering, SPI

e Provide seed funding for the new Computer Science division at SLAC

e Strengthen the collaborations between LCLS and CAMERA, MBIB, NERSC
(previously carved out of operations funding), ESnet and Stanford

e Collaboration with supercomputer facilities avoids need to scale LCLS HPC to
the highest demand (exascale) experiments, while maintaining critical
capabilities at SLAC



Data Systems Architecture: Evolution
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LCLS Network needs and border links
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Core Technologies
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Infiniband wherever possible (i.e. on short distances)

NVRAM devices and NVMe over fabric

100 Gb/s and 400 Gb/s Ethernet between experimental halls and data center(s)
Many cores CPUs (KNL) - see NERSC slides for future exascale architectures
HDF5 for data format

SDN

Python as programming language with C/C++ kernels

Main open question: file system technology - Lustre? Object storage? Other?
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