Internal alignment with new version (v2)

Alessandra Filippi October 8, 2018

2016 data @ 0.5 mm: where we stand

- The current version v5.3 used for pass1 is decently good as far as internal residuals, global alignment offsets and beam resolutions are concerned
- Further work improved the "microscopic" alignment (up to v5.65) without major benefits to resolutions
- Problem: vertex localization
 - Reconstruction says: the target is not at (0,0,0)
 - The beam coordinates are external parameters in the reconstruction (inserted by hand in the compact.xml file), do not affect alignment but track reconstruction (i.e. particle momentum)
 - x, y beam centering to (0,0) can be done relatively easy based on the alignment equalizing d_0 , z_0 impact parameters
 - This procedure moves the z further away
 - Depending on the used sample (FEE, Mollers, all tracks) the z coordinate of the vertex is different

2016: pass1 alignment (v5-3)- how bad is it?

Resolutions with 2016-pass1 detector

6

mm

2000

1.5 -1 -0.5 0 0.5

15

2.5

1.5

1

-1.5 -1 -0.5 0 0.5

2016 global alignment development where is the target? $Z_{0\frac{1}{5}} = Z_{0\frac{1}{5}}$

- Same technique as done for 2015 on FEE selected sample: the z coordinate of the vertex is always around -5,-6 mm
- Is this information contradictory with the z vertex estimation from Møller pairs?

	Тор	Bottom
PO	-0.17	0.17
P1	5.20	5.95

$$y_T \Big|_{z=0} = \underbrace{y_{tgt}}_{p_0} - \underbrace{z_{tgt}}_{-p_1} \cdot \tan \lambda$$

(for small angles: $tan\lambda = sin (90-\theta_y)$)

2016 data @ 0.5 mm alignment: new version

- New detector (v2) provided by Norman
 - No internal+external alignment
 - Starting from 2015 survey
 - Modified parameters:
 - Global opening angles:
 - ТОР
 - » Rotation around u: 0 -> 0.0002
 - » Rotation around v: 0
 - » Rotaton around z: 0 -> -0.001
 - BOTTOM
 - » Rotation around u: 0 -> -0.00026
 - » Rotation around v: 0
 - » Rotaton around z: 0
 - The bottom array is translated along x (u?) of +1mm
 - Target position in the reconstruction: (0,0,0)
 - Old fieldmap
- With this detector TOP and BOT track momenta are equalized, the z of the target is located at -5 mm (from Moller events) – see Norman's slides

NEW

2016 v2 w fieldmap, 0.5mm curved tracks only, NO alignment - START

Good alignment top/bottom d $_0$ BUT they are not zero: ~150 μ m

The elastic peak momentum is **not** underestimated!

V2 detector internal residuals

Curved tracks

The internal alignment from the surveyed coordinates + added fixes is very bad

Straight tracks

Target location?

- Studies of Moller/FEE sample find the target z at about -5 mm (from hps-java)
- Location confirmed by ntuples
- Location confirmed by beamslicing method for all tracks and Mollers
 - Visually, the track bunches are rather dirty (in spite of hard cut on χ^2) and the two sets of electron tracks have a rather large emittance, which implies a wide spot at the target position – the minimum is ~16 mm in y)
 - The target is located at the z coordinate where there is maximum overlap between the beam spots
 - Minimum found at 4.37 mm
 - Systematic uncertainty of the method (estimated by MC electron gun at 2.3 GeV/c): <0.8 mm

14.14

Internal alignment (usual) procedure

- Reconstruction with (0,0,0) target position
- No global alignment (impact parameter equalization)
- Usual iterative procedure based on residual analysis
- Minimization on curved + straight tracks
- Two/three sensors at a time at most
 - U translations, W translations, ..., repeat, ...
 - Float central sensors 3-4, float 2-5, float 3-4-5, float 2-3-4,..., repeat, ...
 - Pass to rotations once a steady tuning with translations is achieved
- Check elastic peak momentum consistency, Moller total momentum, Moller e⁻e⁻ invariant mass, ...
- Check/find vertex location
- Work in progress, see some intermediate steps (on small statistics, recorrun on 100K events, with old fieldmap)
- Starting from a very misaligned detector
- A look at the first 7 steps...

2016 v2-1 w fieldmap, 0.5mm all curved tracks (reduced sample) - 3-4-5 tu

entries/(52 μm)

#1

laver

 d_0 t/b are no more aligned (top moves away, about twice the distance)

2016 v2-2 w fieldmap, 0.5mm all curved tracks (reduced sample) – 2-3-4-5 tu

2016 v2-3 w fieldmap, 0.5mm

all curved tracks (reduced sample) - 3-4 tu

2016 v2-4 w fieldmap, 0.5mm all curved tracks (redced sample) – 3-4 tu+tw

22622

0.166

29728

0.1883

300

200

100

0.5

2016 v2-5 w fieldmap, 0.5mm curved tracks (reduced sample) - 3-4 all rot

1600

1400

1200

1000 800

> 600 400

200

h z0 gbl top

22640

0.1665

Entries

Std Dev

 2.238 ± 0.002 Mean 0.1506 ± 0.0028 Sigma Elastic peak momentum ∆p = 0.023 GeV/c underestimated 1.5 2.5 2

track momentum, [GeV/c]

#6

2016 v2-5 w fieldmap, 0.5mm

all curved tracks (reduced sample) - 2-3-4-5 tu

d_0 t/b are no more aligned (top moves) away)

Elastic peak momentum underestimated

#7

2016 v2-7 w fieldmap, 0.5mm all curved tracks (reduced sample) - 3-4 tu-tw

entries/(52 μm

laver

1st week wrap-up

- d₀ t/b symmetry lost, z₀ not affected by internal alignment (it can however be recovered by external alignment, if necessary)
- The internal alignment lowers the elastic peak momentum (t/b symmetry preserved, sometimes even improved)
- Further minimizations after rotations: not improving
- Best residual centering: #4, #5, #7 (last two include rotations)
- Retune from #4 or continue from #7
- Keep rotations as last instance
- How do physical distributions look like?
 - practically, the same

Target position, Moller events

3500

400

300

200

Mean

Sigma

Moller Vertex unc Y

molUncVY

41462

-0.13

0.3668

Entries

Mean

RMS

V 2-5

Moller Vertex unc X molUncVX 2200 Entries 41462 2000 Mean -0.3383 RMS 0.516 1800 χ^2 / ndf 72.92 / 23 Constant 1966 ± 14.5 1600 Mean -0.2872 ± 0.0026 1400 Sigma 0.3837 ± 0.0030 1200 1000 800 600 400 200 25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Moller Vertex unc Z molUncVZ 41462 Entries 800 -2.447 Mean RMS 4.09 700F 215.9/64 χ^2 / ndf Constant 753.1±5.7 600 -3.367 ± 0.025 Mean 3.782 ± 0.029 Sigma 500 400F 300 200 100

Momentum components, Moller events

V 2-4

V 2-5

In both cases it looks like the bottom spectra (violet) are slightly harder than the top ones The difference is very tiny

FEE momentum/ e⁻e⁻ invariant mass resolutions

V 2-6

V 2-5

