Internal alignment with new version (v2)

Alessandra Filippi
October 8, 2018

2016 data @ 0.5 mm: where we stand

- The current version v5.3 used for pass1 is decently good as far as internal residuals, global alignment offsets and beam resolutions are concerned
- Further work improved the "microscopic" alignment (up to v5.65) without major benefits to resolutions
- Problem: vertex localization
- Reconstruction says: the target is not at ($0,0,0$)
- The beam coordinates are external parameters in the reconstruction (inserted by hand in the compact.xml file), do not affect alignment but track reconstruction (i.e. particle momentum)
$-x$, y beam centering to $(0,0)$ can be done relatively easy based on the alignment equalizing d_{0}, z_{0} impact parameters
- This procedure moves the z further away
- Depending on the used sample (FEE, Mollers, all tracks) the z coordinate of the vertex is different

2016: pass1 alignment (v5-3)- how bad is it?

- Tuning of impact parameters can be improved, but not dramatic

- Raw momentum spectrum (no quality cut): top/bottom alignment within $12 \mathrm{MeV} / \mathrm{c}$ at the elastic peak
- Systematic on the momenta of more than $\mathrm{n}_{13} 70$ $\mathrm{MeV} / \mathrm{c}$ (wrt to nominal beam value)

Resolutions with 2016-pass1 detector

- good resolutions on momenta (5.5-5.8\% σ) and invariant mass ($4 \% \sigma$)
- but... where is the target located?

Vertex coordinates for Møller events: z misplacement of $\sim 1.2 \mathrm{~mm}$

2016 global alignment development where is the target?

- Same technique as done for 2015 on FEE selected sample: the z coordinate of the vertex is always around $-5,-6 \mathrm{~mm}$
- Is this information contradictory with the z vertex estimation from $\mathrm{M} \varnothing$ ller pairs?

(for small angles: $\tan \lambda=\sin \left(90-\theta_{\mathrm{y}}\right)$)

2016 data @ 0.5 mm alignment: new version

- New detector (v2) provided by Norman
- No internal+external alignment
- Starting from 2015 survey
- Modified parameters:
- Global opening angles:
- TOP
» Rotation around u: 0 -> 0.0002
» Rotation around $\mathrm{v}: 0$
> Rotaton around z: 0-> -0.001
- BOTTOM
» Rotation around u: 0 -> -0.00026
» Rotation around v: 0
» Rotaton around z: 0
- The bottom array is translated along x (u ?) of +1 mm
- Target position in the reconstruction: $(0,0,0)$
- Old fieldmap
- With this detector TOP and BOT track momenta are equalized, the z of the target is located at -5 mm (from Moller events) - see Norman's slides

NEW

2016 v2 w fieldmap, 0.5mm

curved tracks only, NO alignment - START

Good alignment top/bottom d_{0} BUT they are not zero: ${ }^{\sim} 150 \mu \mathrm{~m}$

$$
\begin{gathered}
\text { T/B diff } \\
\Delta \mathrm{d}_{0}=3 \mu \mathrm{~m} \\
\Delta z_{0}=252 \mu \mathrm{~m} \\
\Delta \mathrm{p}=28 \mathrm{MeV} / \mathrm{c}
\end{gathered}
$$

$$
\begin{aligned}
& p_{\text {top }}=2.326 \mathrm{MeV} / \mathrm{c} \\
& \mathrm{p}_{\text {bot }}=2.298 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

The elastic peak momentum is not underestimated!

V2 detector internal residuals

Curved tracks

Straight tracks

The internal alignment from the surveyed coordinates + added fixes is very bad

Target location?

- Studies of Moller/FEE sample find the target z at about -5 mm (from hps-java)
- Location confirmed by ntuples
- Location confirmed by beamslicing method for all tracks and Mollers
- Visually, the track bunches are rather dirty (in spite of hard cut on χ^{2}) and the two sets of electron tracks have a rather large emittance, which implies a wide spot at the target position the minimum is $\sim 16 \mathrm{~mm}$ in y)
- The target is located at the z coordinate where there is maximum overlap between the beam spots
- Minimum found at 4.37 mm
- Systematic uncertainty of the method (estimated by MC electron gun at $2.3 \mathrm{GeV} / \mathrm{c}$): <0.8 mm

Moller events v2

Internal alignment (usual) procedure

- Reconstruction with $(0,0,0)$ target position
- No global alignment (impact parameter equalization)
- Usual iterative procedure based on residual analysis
- Minimization on curved + straight tracks
- Two/three sensors at a time at most
- U translations, W translations, ..., repeat, ...
- Float central sensors 3-4, float 2-5, float 3-4-5, float 2-3-4,..., repeat, ...
- Pass to rotations once a steady tuning with translations is achieved
- Check elastic peak momentum consistency, Moller total momentum, Moller e-e- invariant mass, ...
- Check/find vertex location
- Work in progress, see some intermediate steps (on small statistics, reco run on 100K events, with old fieldmap)
- Starting from a very misaligned detector
- A look at the first 7 steps... all curved tracks (reduced sample) - 3-4-5 tu

$\mathrm{d}_{0} \mathrm{t} / \mathrm{b}$ are no more aligned (top moves away, about twice the distance)

track momentum, $[\mathrm{GeV} / \mathrm{c}]$

T/B diff
$\Delta d_{0}=220 \mu \mathrm{~m}$ $\Delta z_{0}=244 \mu \mathrm{~m}$ $\Delta p=81 \mathrm{MeV} / \mathrm{c}$
$p_{\text {top }}=2.226 \mathrm{MeV} / \mathrm{c}$ $p_{\text {bot }}=2.306 \mathrm{MeV} / \mathrm{c}$

The elastic peak momentum is not underestimated!

2016 v2-2 w fieldmap, 0.5mm all curved tracks (reduced sample) - 2-3-4-5 tu

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$$
\Delta \mathrm{d}_{0}=-113 \mu \mathrm{~m}
$$

$$
\Delta z_{0}=243 \mu \mathrm{~m}
$$

$$
\Delta \mathrm{p}=20 \mathrm{MeV} / \mathrm{c}
$$

$$
\begin{aligned}
& p_{\text {top }}=2.271 \mathrm{MeV} / \mathrm{c} \\
& p_{\text {bot }}=2.252 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

Elastic peak momentum underestimated again

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$$
\Delta d_{0}=-158 \mu \mathrm{~m}
$$

$$
\Delta z_{0}=243 \mu \mathrm{~m}
$$

$$
\Delta \mathrm{p}=3 \mathrm{MeV} / \mathrm{c}
$$

$p_{\text {top }}=2.263 \mathrm{MeV} / \mathrm{c}$ $p_{\text {bot }}=2.266 \mathrm{MeV} / \mathrm{c}$

Elastic peak momentum underestimated

2016 v2-4 w fieldmap, 0.5mm all curved tracks (redced sample) - 3-4 tu+tw

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$$
\begin{gathered}
\Delta d_{0}=-155 \mu \mathrm{~m} \\
\Delta z_{0}=243 \mu \mathrm{~m} \\
\Delta \mathrm{p}=7 \mathrm{MeV} / \mathrm{c}
\end{gathered}
$$

$p_{\text {top }}=2.268 \mathrm{MeV} / \mathrm{c}$
$p_{\text {bot }}=2.261 \mathrm{MeV} / \mathrm{c}$

Elastic peak momentum underestimated

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$$
\Delta \mathrm{d}_{0}=-146 \mu \mathrm{~m}
$$

$$
\Delta z_{0}=255 \mu \mathrm{~m}
$$

$$
\Delta \mathrm{p}=23 \mathrm{MeV} / \mathrm{c}
$$

$p_{\text {top }}=2.261 \mathrm{MeV} / \mathrm{c}$
$p_{\text {bot }}=2.238 \mathrm{MeV} / \mathrm{c}$

Elastic peak momentum underestimated
 all curved tracks (reduced sample) - 2-3-4-5 tu

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$\Delta d_{0}=-128 \mu \mathrm{~m}$
$\Delta z_{0}=256 \mu \mathrm{~m}$
$\Delta p=30 \mathrm{MeV} / \mathrm{c}$
$p_{\text {top }}=2.252 \mathrm{MeV} / \mathrm{c}$
$p_{\text {bot }}=2.222 \mathrm{MeV} / \mathrm{c}$

Elastic peak momentum underestimated

2016 v2-7 w fieldmap, 0.5mm
all curved tracks (reduced sample) - 3-4 tu-tw

$d_{0} t / b$ are no more aligned (top moves away)

T/B diff

$\Delta d_{0}=-118 \mu \mathrm{~m}$
$\Delta \mathrm{z}_{0}=253 \mu \mathrm{~m}$
$\Delta p=38 \mathrm{MeV} / \mathrm{c}$
$p_{\text {top }}=2.268 \mathrm{MeV} / \mathrm{c}$
$p_{\text {bot }}=2.23 \mathrm{MeV} / \mathrm{c}$

Elastic peak momentum underestimated

$1^{\text {st }}$ week wrap-up

- $d_{0} t / b$ symmetry lost, z_{0} not affected by internal alignment (it can however be recovered by external alignment, if necessary)
- The internal alignment lowers the elastic peak momentum (t / b symmetry preserved, sometimes even improved)
- Further minimizations after rotations: not improving
- Best residual centering: \#4, \#5, \#7 (last two include rotations)
- Retune from \#4 or continue from \#7
- Keep rotations as last instance
- How do physical distributions look like?
- practically, the same

Target position, Moller events

V 2-4

V 2-5

Momentum components, Moller events

V 2-4

V 2-5

Moller unc top track Y momentum

Moller unc top track Z momentum

In both cases it looks like the bottom spectra (violet) are slightly harder than the top ones The difference is very tiny

FEE momentum/ $\mathrm{e}^{-} \mathrm{e}^{-}$invariant mass resolutions

V 2-6
electron momentum TOP tracks 6 hits

e invariant mass (GeV)

V 2-5

invariant mass Moller pair

$\Delta \mathrm{m} / \mathrm{m}=0.043 \sigma$
$\mu=0.051 \mathrm{GeV}$
$\sigma=0.002 \mathrm{GeV}$

Worse than
best ali shown
in may

