
[Guide Subtitle]
[optional]

UG761 (v13.4) January 18, 2012 [optional]

AXI Reference
Guide

UG761 (v13.4) January 18, 2012

AXI Reference Guide www.xilinx.com UG761 (v13.4) January 18, 2012

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© Copyright 2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, Kintex, Artix, ISE, Zynq, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

ARM® and AMBA® are registered trademarks of ARM in the EU and other countries. All other trademarks are the property of their
respective owners.

Revision History
The following table shows the revision history for this document:
.

Date Version Description of Revisions

03/01/2011 13.1 Second Xilinx release. Added new AXI Interconnect features.

Corrected ARESETN description in Appendix A.

03/07/2011 13.1_web Corrected broken link.

07/06/2011 13.2 Release changes:

• Updated AXI Interconnect IP features and use cases.
• Added Optimization chapter.

http://www.xilinx.com

UG761 (v13.4) January 18, 2012 www.xilinx.com AXI Reference Guide

10/19/2011 13.3 Release updates:

• Added information about an AXI Interconnect option to delay assertion of
AWVALID/ARVALID signals until FIFO occupancy permits interrupted burst
transfers to AXI Interconnect Core Features, page 14.

• Added limitation related to CORE Generator use in AXI Interconnect Core
Limitations, page 17.

• Added the impact of delay assertion BRAM FIFO option to as a means of improving
throughput to Table 5-1, page 88.

• Added the impact of delay assertion BRAM FIFO option to as a means of improving
throughput to Throughput / Bandwidth Optimization Guidelines, page 92.

• Added reference to AXI MPMC Application Note, (XAPP739), to AXI4-based
Multi-Ported Memory Controller: AXI4 System Optimization Example, page 94.

• Added information regarding the AXI Interconnect option to delay assertion of
AWVALID/ARVALID signals until FIFO occupancy permits interrupted burst
transfers to Refining the AXI Interconnect Configuration, page 98.

• Added information about using the BSB for an AXI design in Using Base System
Builder Without Analyzing and Optimizing Output, page 106.

• Added reference to AXI MPMC Application Note, (XAPP739), to Appendix C,
Additional Resources.

01/18/2012 13.4 Modified:

• References to 7 series and Zynq™ Extensible Platform devices in Introduction in
Chapter 1, “Introducing AXI for Xilinx System Development.”

• Figure 2-1, page 11 and Figure 2-4, page 13 to reflect new IP Catalog in tools.

• Data Widths throughout document.

• Reset statement in Table 3-1, page 41.

• Signal names in Slave FSL to AXI4-Stream Signal Mapping, page 78.

Added:

• References to new design templates, documented in
http://www.xilinx.com/support/answers/37425.htm, in Chapter 2, AXI
Support in Xilinx Tools and IP.

• Information about the Data Mover in Chapter 2. Changed all bit widths to include
512, 1024.

• Information to Centralized DMA in Chapter 2, and Video DMA in Chapter 2.
• Note to TSTRB in Table 3-2, page 43.
• Note to DSP and Wireless IP: AXI Feature Adoption, page 54.
• Migrating Designs from XSVI to Video over AXI4-Stream, page 82.
• References to new design templates, documented in

http://www.xilinx.com/support/answers/37425.htm, in Migrating to AXI for IP
Cores in Chapter 4.

• Section for Video IP: AXI Feature Adoption, page 55.
• References for an example of an AXI MPMC used in a high performance system,

Designing High-Performance Video Systems with the AXI Interconnect, (XAPP740), in
AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example
in Chapter 5.

• Information about DPS IP in Table A-1, page 107.
• New links in Appendix C, Additional Resources.

Date Version Description of Revisions

http://www.xilinx.com
http://www.xilinx.com/support/answers/37425.htm
http://www.xilinx.com/support/answers/37425.htm

AXI Reference Guide www.xilinx.com UG761 (v13.4) January 18, 2012

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 1
UG761 (v13.4) January 18, 2012

Revision History . 2

Chapter 1: Introducing AXI for Xilinx System Development
Introduction . 3
What is AXI? . 3
How AXI Works . 4
IP Interoperability . 6
What AXI Protocols Replace . 8
Targeted Reference Designs . 8

Chapter 2: AXI Support in Xilinx Tools and IP
AXI Development Support in Xilinx Design Tools . 9
Xilinx AXI Infrastructure IP . 14

Chapter 3: AXI Feature Adoption in Xilinx FPGAs
Memory Mapped IP Feature Adoption and Support. 41
AXI4-Stream Adoption and Support . 43
DSP and Wireless IP: AXI Feature Adoption . 54
Video IP: AXI Feature Adoption . 55

Chapter 4: Migrating to Xilinx AXI Protocols
Introduction . 69
The AXI To PLBv.46 Bridge . 70
Migrating Local-Link to AXI4-Stream. 72
Using System Generator for Migrating IP. 75
Migrating a Fast Simplex Link to AXI4-Stream. 77
Migrating HDL Designs to use DSP IP with AXI4-Stream . 79
Migrating Designs from XSVI to Video over AXI4-Stream 82
Software Tool Considerations for AXI Migration (Endian Swap) 82
General Guidelines for Migrating Big-to-Little Endian. 83
Data Types and Endianness . 84
High End Verification Solutions. 85

Chapter 5: AXI System Optimization: Tips and Hints
AXI System Optimization . 91
AXI4-based Multi-Ported Memory Controller:

AXI4 System Optimization Example. 94
Common Pitfalls Leading to AXI Systems of Poor Quality Results 103

Table of Contents

http://www.xilinx.com

2 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix A: AXI Adoption Summary
AXI4 and AXI4-Lite Signals . 107
AXI4-Stream Signal Summary . 111

Appendix B: AXI Terminology

Appendix C: Additional Resources
Xilinx Documentation . 115
Third Party Documents. 116

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 3
UG761 (v13.4) January 18, 2012

Chapter 1

Introducing AXI for Xilinx System Development

Introduction
Xilinx® adopted the Advanced eXtensible Interface (AXI) protocol for Intellectual Property
(IP) cores beginning with the Spartan®-6 and Virtex®-6 devices. Xilinx has continued the
use of the AXI protocol for IP targeting the 7 series, and the Zynq™-7000 Extensible
Processing Platform (EPP) devices (Zynq is in Beta development.)

This document is intended to:

• Introduce key concepts of the AXI protocol

• Give an overview of what Xilinx tools you can use to create AXI-based IP

• Explain what features of AXI Xilinx has adopted

• Provide guidance on how to migrate your existing design to AXI

Note: This document is not intended to replace the Advanced Microcontroller Bus
Architecture (AMBA®) ARM® AXI4 specifications. Before beginning an AXI design, you need to
download, read, and understand the ARM AMBA AXI Protocol v2.0 Specification, along with the
AMBA4 AXI4-Stream Protocol v1.0.

These are the steps to download the specifications; you might need to fill out a brief
registration before downloading the documents:

1. Go to www.amba.com

2. Click Download Specifications.

3. In the Contents pane on the left, click AMBA > AMBA Specifications >AMBA4.

4. Download both the ABMA AXI4-Stream Protocol Specification and AMBA AXI Protocol
Specification v2.0.

What is AXI?
AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996. The
first version of AXI was first included in AMBA 3.0, released in 2003. AMBA 4.0, released
in 2010, includes the second version of AXI, AXI4.

There are three types of AXI4 interfaces:

• AXI4—for high-performance memory-mapped requirements.

• AXI4-Lite—for simple, low-throughput memory-mapped communication (for
example, to and from control and status registers).

• AXI4-Stream—for high-speed streaming data.

Xilinx introduced these interfaces in the ISE® Design Suite, release 12.3.

http://www.xilinx.com
http://www.amba.com

4 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 1: Introducing AXI for Xilinx System Development

Summary of AXI4 Benefits
AXI4 provides improvements and enhancements to the Xilinx product offering across the
board, providing benefits to Productivity, Flexibility, and Availability:

• Productivity—By standardizing on the AXI interface, developers need to learn only a
single protocol for IP.

• Flexibility—Providing the right protocol for the application:

• AXI4 is for memory mapped interfaces and allows burst of up to 256 data transfer
cycles with just a single address phase.

• AXI4-Lite is a light-weight, single transaction memory mapped interface. It has a
small logic footprint and is a simple interface to work with both in design and
usage.

• AXI4-Stream removes the requirement for an address phase altogether and allows
unlimited data burst size. AXI4-Stream interfaces and transfers do not have
address phases and are therefore not considered to be memory-mapped.

• Availability—By moving to an industry-standard, you have access not only to the
Xilinx IP catalog, but also to a worldwide community of ARM Partners.

• Many IP providers support the AXI protocol.

• A robust collection of third-party AXI tool vendors is available that provide a
variety of verification, system development, and performance characterization
tools. As you begin developing higher performance AXI-based systems, the
availability of these tools is essential.

How AXI Works
This section provides a brief overview of how the AXI interface works. The Introduction,
page 3, provides the procedure for obtaining the ARM specification. Consult those
specifications for the complete details on AXI operation.

The AXI specifications describe an interface between a single AXI master and a single AXI
slave, representing IP cores that exchange information with each other. Memory mapped
AXI masters and slaves can be connected together using a structure called an Interconnect
block. The Xilinx AXI Interconnect IP contains AXI-compliant master and slave interfaces,
and can be used to route transactions between one or more AXI masters and slaves. The
AXI Interconnect IP is described in Xilinx AXI Interconnect Core IP, page 14.

Both AXI4 and AXI4-Lite interfaces consist of five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

Data can move in both directions between the master and slave simultaneously, and data
transfer sizes can vary. The limit in AXI4 is a burst transaction of up to 256 data transfers.
AXI4-Lite allows only 1 data transfer per transaction.

Figure 1-1, page 5 shows how an AXI4 Read transaction uses the Read address and Read
data channels:

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 5
UG761 (v13.4) January 18, 2012

How AXI Works

Figure 1-2 shows how a write transaction uses the write address, write data, and write
response channels.

As shown in the preceding figures, AXI4 provides separate data and address connections
for reads and writes, which allows simultaneous, bidirectional data transfer. AXI4 requires
a single address and then bursts up to 256 words of data. The AXI4 protocol describes a
variety of options that allow AXI4-compliant systems to achieve very high data
throughput. Some of these features, in addition to bursting, are: data upsizing and
downsizing, multiple outstanding addresses, and out-of-order transaction processing.

At a hardware level, AXI4 allows a different clock for each AXI master-slave pair. In
addition, the AXI protocol allows the insertion of register slices (often called pipeline
stages) to aid in timing closure.

Figure 1-1: Channel Architecture of Reads

Figure 1-2: Channel Architecture of writes

Master
interface

Read address channel
Address

and
control

Read data channel

Read
data

Read
data

Read
data

Read
data

Slave
interface

X12076

Master
interface

Write address channel
Address

and
control

Write data channel

Write
data

Write
data

Write
data

Write
data

Write
response

Write response channel

Slave
interface

X12077

http://www.xilinx.com

6 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 1: Introducing AXI for Xilinx System Development

AXI4-Lite is similar to AXI4 with some exceptions, the most notable of which is that
bursting, is not supported. The AXI4-Lite chapter of the ARM AMBA AXI Protocol v2.0
Specification describes the AXI4-Lite protocol in more detail.

The AXI4-Stream protocol defines a single channel for transmission of streaming data. The
AXI4-Stream channel is modeled after the write data channel of the AXI4. Unlike AXI4,
AXI4-Stream interfaces can burst an unlimited amount of data. There are additional,
optional capabilities described in the AXI4-Stream Protocol Specification. The specification
describes how AXI4-Stream-compliant interfaces can be split, merged, interleaved,
upsized, and downsized. Unlike AXI4, AXI4-Stream transfers cannot be reordered.

Note: With regards to AXI4-Stream, even if two pieces of IP are designed in accordance with the
AXI4-Stream specification, and are compatible at a signaling level, it does not guarantee that two
components will function correctly together due to higher level system considerations. Refer
to the AXI IP specifications at http://www.xilinx.com/support/documentation/
axi_ip_documentation.htm, and AXI4-Stream Signals, page 43 for more information.

IP Interoperability
The AXI specification provides a framework that defines protocols for moving data
between IP using a defined signaling standard. This standard ensures that IP can exchange
data with each other and that data can be moved across a system.

AXI IP interoperability affects:

• The IP application space

• How the IP interprets data

• Which AXI interface protocol is used (AXI4, AXI4-Lite, or AXI4-Stream)

The AXI protocol defines how data is exchanged, transferred, and transformed. The AXI
protocol also ensures an efficient, flexible, and predictable means for transferring data.

About Data Interpretation
The AXI protocol does not specify or enforce the interpretation of data; therefore, the data
contents must be understood, and the different IP must have a compatible interpretation of
the data.

For IP such as a general purpose processor with an AXI4 memory mapped interface, there
is a great degree of flexibility in how to program a processor to format and interpret data as
required by the Endpoint IP.

About IP Compatibility
For more application-specific IP, like an Ethernet MAC (EMAC) or a Video Display IP
using AXI4-Stream, the compatibility of the IP is more limited to their respective
application spaces. For example, directly connecting an Ethernet MAC to the Video
Display IP would not be feasible.

Note: Even though two IP such as EMAC and Video Streaming can theoretically exchange data
with each other, they would not function together because the two IP interpret bit fields and data
packets in a completely different manner.

http://www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com

AXI Reference Guide www.xilinx.com 7
UG761 (v13.4) January 18, 2012

IP Interoperability

Infrastructure IP
An infrastructure IP is another IP form used to build systems. Infrastructure IP tends to be
a generic IP that moves or transforms data around the system using general-purpose AXI4
interfaces and does not interpret data.

Examples of infrastructure IP are:

• Register slices (for pipeling)

• AXI FIFOs (for buffering/clock conversion)

• AXI Interconnect IP (connects memory mapped IP together)

• AXI Direct Memory Access (DMA) engines (memory mapped to stream conversion)

These IP are useful for connecting a number of IP together into a system, but are not
generally endpoints for data.

Memory Mapped Protocols
In memory mapped AXI (AXI3, AXI4, and AXI4-Lite), all transactions involve the concept
of a target address within a system memory space and data to be transferred.

Memory mapped systems often provide a more homogeneous way to view the system,
because the IPs operate around a defined memory map.

AXI4-Stream Protocol
The AXI4-Stream protocol is used for applications that typically focus on a data-centric
and data-flow paradigm where the concept of an address is not present or not required.
Each AXI4-Stream acts as a single unidirectional channel for a handshake data flow.

At this lower level of operation (compared to the memory mapped AXI protocol types), the
mechanism to move data between IP is defined and efficient, but there is no unifying
address context between IP. The AXI4-Stream IP can be better optimized for performance
in data flow applications, but also tends to be more specialized around a given application
space.

Combining AXI4-Stream and Memory Mapped Protocols
Another approach is to build systems that combine AXI4-Stream and AXI memory
mapped IP together. Often a DMA engine can be used to move streams in and out of
memory. For example, a processor can work with DMA engines to decode packets or
implement a protocol stack on top of the streaming data to build more complex systems
where data moves between different application spaces or different IP.

http://www.xilinx.com

8 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 1: Introducing AXI for Xilinx System Development

What AXI Protocols Replace
Table 1-1 lists the high-level list of AXI4 features available and what protocols an AXI
option replaces.

Targeted Reference Designs
The other chapters of this document go into more detail about AXI support in Xilinx tools
and IP. To assist in the AXI transition, the Spartan-6 and Virtex-6 Targeted Reference
Designs, which form the basis of the Xilinx targeted domain platform solution, have been
migrated to support AXI. These targeted reference designs provide the ability to
investigate AXI usage in the various Xilinx design domains such as Embedded, DSP, and
Connectivity. More information on the targeted reference designs is available at
http://www.xilinx.com/products/targeted_design_platforms.htm.

Table 1-1: AXI4 Feature Availability and IP Replacement (1)

Interface Features Replaces

AXI4 • Traditional memory mapped address/
data interface.

• Data burst support.

PLBv3.4/v4.6

OPB

NPI

XCL

AXI4-Lite • Traditional memory mapped address/
data interface.

• Single data cycle only.

PLBv4.6 (singles only)

DCR

DRP

AXI4-Stream • Data-only burst. Local-Link

DSP

TRN (used in PCIe)

FSL

1. See Chapter 4, “Migrating to Xilinx AXI Protocols,” for more information.

http://www.xilinx.com/products/targeted_design_platforms.htm
http://www.xilinx.com

AXI Reference Guide www.xilinx.com 9
UG761 (v13.4) January 18, 2012

Chapter 2

AXI Support in Xilinx Tools and IP

AXI Development Support in Xilinx Design Tools
This section describes how Xilinx® tools can be used to build systems of interconnected
Xilinx AXI IP (using Xilinx Platform Studio or System Generator for DSP), and deploy
individual pieces of AXI IP (using the CORE Generator™ tool).

Using Embedded Development Kit: Embedded and System Edition
Xilinx ISE Design Suite: Embedded Edition and System Edition support the addition of
AXI cores into your design through the tools described in the following subsections.

Creating an Initial AXI Embedded System

The following Embedded Development Kit (EDK) tools support the creation and addition
of AXI-based IP Cores (pcores).

• Base System Builder (BSB) wizard—creates either AXI or PLBv.46 working
embedded designs using any features of a supported development board or using
basic functionality common to most embedded systems. After creating a basic system,
customization can occur in the main Xilinx Platform Studio (XPS) view and in the
ISE® Design Suite. Xilinx recommends using the BSB to start new designs. Refer to the
XPS Help for more information.

• Xilinx Platform Studio (XPS)—provides a block-based system assembly tool for
connecting blocks of IPs together using many bus interfaces (including AXI) to create
embedded systems, with or without processors. XPS provides a graphical interface for
connection of processors, peripherals, and bus interfaces.

• Software Development Toolkit (SDK)— is the software development environment
for application projects. SDK is built with the Eclipse open source standard. For
AXI-based embedded systems, hardware platform specifications are exported in an
XML format to SDK (XPS-based software development and debugging is not
supported.) Refer to SDK Help for more information.

More information on EDK is available at:
http://www.xilinx.com/support/documentation/dt_edk.htm.

Creating and Importing AXI IP

XPS contains a Create and Import Peripheral (CIP) wizard that automates adding your IP
to the IP repository in Platform Studio.

http://www.xilinx.com/cgi-bin/docs/rdoc?l=env=13.4;t=edk+docs;d=index.html
http://www.xilinx.com/cgi-bin/docs/rdoc?l=env=13.4;t=edk+docs;d=index.html
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com

10 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Debugging and Verifying Designs: Using ChipScope in XPS

The ChipScope™ Pro Analyzer AXI monitor core, chipscope_axi_monitor, aids in
monitoring and debugging Xilinx AXI4 or AXI4-Lite protocol interfaces. This core lets you
probe any AXI, memory mapped master or slave bus interface. It is available in XPS.

With this probe you can observe the AXI signals going from the peripheral to the AXI
Interconnect core. For example, you can set a monitor on a MicroBlaze processor
instruction or data interface to observe all memory transactions going in and out of the
processor.

Each monitor core works independently, and allows chaining of trigger outputs to enable
taking system level measurements. By using the auxiliary trigger input port and the trigger
output of a monitor core you can create multi-level triggering environments to simplify
complex system-level measurements.

For example, if you have a master operating at 100MHz and a slave operating at 50MHz,
this multi-tiered triggering lets you analyze the transfer of data going from one time
domain to the next. Also, with this system-level measurement, you can debug complex
multi-time domain system-level issues, and analyze latency bottlenecks in your system.

You can add the chipscope_axi_monitor core to your system using the IP Catalog in XPS
available under the /debug folder as follows:

1. Put the chipscope_axi_monitor into your bus interface System Assembly View (SAV).

2. Select the bus you want to probe from the Bus Name field.

After you select the bus, an “M” for monitor displays between your peripheral and the
AXI Interconnect core IP.

3. Add a ChipScope ICON core to your system, and connect the control bus to the AXI
monitor.

4. In the SAV Ports tab, on the monitor core, set up the MON_AXI_ACLK port of the core to
match the clock used by the AXI interface being probed.

Optionally, you can assign the MON_AXI_TRIG_OUT port and connect it to other
chipscope_axi_monitor cores in the system.

Using Processor-less Embedded IP in Project Navigator
You might want to use portions of EDK IP outside of a processor system. For example, you
can use an AXI Interconnect core block to create a multiported DDR3 controller. XPS can be
used to manage, connect, and deliver EDK IP, even without a processor. See Xilinx Answer
Record 37856 for more information.

Using System Generator: DSP Edition
System Generator for DSP supports both AXI4 and AXI4-Stream interfaces:

• AXI4 interface is supported in conjunction with the EDK Processor Block.

• AXI4-Stream interface is supported in IPs found in the System Generator AXI4 block
library.

AXI4 Support in System Generator

AXI4 (memory-mapped) support in System Generator is available through the EDK
Processor block found in the System Generator block set.

http://www.xilinx.com/support/answers/37856.htm
http://www.xilinx.com

AXI Reference Guide www.xilinx.com 11
UG761 (v13.4) January 18, 2012

AXI Development Support in Xilinx Design Tools

The EDK Processor block lets you connect hardware circuits created in System Generator
to a Xilinx MicroBlaze™ processor; options to connect to the processor using either a
PLBv4.6 or an AXI4 interface are available.

You do not need to be familiar with the AXI4 nomenclature when using the System
Generator flow because the EDK Processor block provides an interface that is
memory-centric and works with multiple bus types.

You can create hardware that uses shared registers, shared FIFOs, and shared memories,
and the EDK Processor block manages the memory connection to the specified interface.

Figure 2-1 shows the EDK Processor Implementation tab with an AXI4 bus type selected.

Port Name Truncation

System Generator shortens the AXI4-Stream signal names to improve readability on the
block; this is cosmetic and the complete AXI4-Stream name is used in the netlist. The name
truncation is turned on by default; uncheck the Display shortened port names option in
the block parameter dialog box to see the full name.

Port Groupings

System Generator groups together and color-codes blocks of AXI4-Stream channel signals.

In the example illustrated in the following figure, the top-most input port, data_tready,
and the top two output ports, data_tvalid and data_tdata belong in the same
AXI4-Stream channel, as well as phase_tready, phase_tvalid, and phase_tdata.

System Generator gives signals that are not part of any AXI4-Stream channels the same
background color as the block; the rst signal, shown in Figure 2-2, page 12, is an example.

Figure 2-1: EDK Processor Interface Implementation Tab

http://www.xilinx.com

12 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Breaking Out Multi-Channel TDATA

The TDATA signal in an AXI4-Stream can contain multiple channels of data. In System
Generator, the individual channels for TDATA are broken out; for example, in the complex
multiplier shown in Figure 2-3 the TDATA for the dout port contains both the imaginary
and the real number components.

Note: Breaking out of multi-channel TDATA does not add additional logic to the design. The data is
correctly byte-aligned also.

For more information about System Generator and AXI IP creation, see the following
Xilinx website: http://www.xilinx.com/tools/sysgen.htm.

Figure 2-2: Block Signal Groupings

Figure 2-3: Multi-Channel TDATA

http://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com

AXI Reference Guide www.xilinx.com 13
UG761 (v13.4) January 18, 2012

AXI Development Support in Xilinx Design Tools

Using Xilinx AXI IP: Logic Edition
Xilinx IP with an AXI4 interface can be accessed directly from the IP catalog in CORE
Generator, Project Navigator, and PlanAhead. An AXI4 column in the IP catalog shows IP
with AXI4 support. The IP information panel displays the supported AXI4, AXI4-Stream,
and AXI4-Lite interface.

Generally, for Virtex®-6 and Spartan®-6 device families, the AXI4 interface is supported by
the latest version of an IP. Older, “Production,” versions of IP continue to be supported by
the legacy interface for the respective core on Virtex-6, Spartan-6, Virtex®-5, Virtex®-4 and
Spartan®-3 device families. The IP catalog displays all “Production” versions of IP by
default. Figure 2-4 shows the IP Catalog in CORE Generator.

Figure 2-5 shows the IP catalog in PlanAhead with the equivalent AXI4 column and the
supported AXI4 interfaces in the IP details panel.

Figure 2-4: IP Catalog in Xilinx Software

Figure 2-5: IP Catalog in PlanAhead Software

http://www.xilinx.com

14 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

New HDL designs for AXI4, AXI4-Lite, and AXI4-Stream masters and slaves can reference
AXI IP HDL design templates provided in the solution record:
http://www.xilinx.com/support/answers/37425.htm.

Check this answer record periodically for updates or new templates.

Xilinx AXI Infrastructure IP
Xilinx has migrated a significant portion of the available IP to AXI prototol. This section
provides an overview of the more complex IP that will be used in many AXI-based
systems.

The following common infrastructure Xilinx IP is available for Virtex®-6 and Spartan®-6
devices, and future device support:

• Xilinx AXI Interconnect Core IP

• Connecting AXI Interconnect Core Slaves and Masters

• External Masters and Slaves

• Data Mover

• Centralized DMA

• Ethernet DMA

• Video DMA

• Memory Control IP and the Memory Interface Generator

Refer to Chapter 4, “Migrating to Xilinx AXI Protocols,” for more detailed usage
information. See the following for a list of all AXI IP:
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm.
Appendix C, Additional Resources, also contains this link.

Xilinx AXI Interconnect Core IP
The AXI Interconnect core IP (axi_interconnect) connects one or more AXI
memory-mapped master devices to one or more memory-mapped slave devices. The AXI
interfaces conform to the AMBA® AXI version 4 specification from ARM®, including the
AXI4-Lite control register interface subset.

Note: The AXI Interconnect core IP is intended for memory-mapped transfers only; AXI4-Stream
transfers are not applicable. IP with AXI4-Stream interfaces are generally connected to one another,
and to DMA IP.

The AXI Interconnect core IP is provided as a non-encrypted, non-licensed (free) pcore in
the Xilinx Embedded Development Toolkit (EDK) and in the Project Navigator for use in
non-embedded designs using the CORE generator® software.

See the AXI_Interconnect IP (DS768) for more information. Appendix C, Additional
Resources, also contains this link.

AXI Interconnect Core Features

The AXI Interconnect IP contains the following features:

• AXI protocol compliant (AXI3, AXI4, and AXI4-Lite), which includes:

• Burst lengths up to 256 for incremental (INCR) bursts

http://www.xilinx.com/support/answers/37425.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=ip+axi+doc;v=13.4;d=ds768_axi_interconnect.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm

AXI Reference Guide www.xilinx.com 15
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

• Converts AXI4 bursts >16 beats when targeting AXI3 slave devices by splitting
transactions.

• Generates REGION outputs for use by slave devices with multiple address decode
ranges

• Propagates USER signals on each channel, if any; independent USER signal width
per channel (optional)

• Propagates Quality of Service (QoS) signals, if any; not used by the AXI
Interconnect core (optional)

• Interface data widths:

• AXI4: 32, 64, 128, 256, 512, or 1024 bits.

• AXI4-Lite: 32 bits

• 32-bit address width

• The Slave Interface (SI) of the core can be configured to compirse 1-16 SI slots to
accept transactions from up to 16 connected master devices. The Master Interface (MI)
can be configured to comprise 1-16 MIT slots to issue transactions to up to 16
connected slave devices.

• Connects 1-16 masters to 1-16 slaves:

• When connecting one master to one slave, the AXI Interconnect core can
optionally perform address range checking. Also, it can perform any of the
normal data-width, clock-rate, or protocol conversions and pipelining.

• When connecting one master to one slave and not performing any conversions or
address range checking, pathways through the AXI Interconnect core are
implemented as wires, with no resources, no delay and no latency.

Note: When used in a non-embedded system such as CORE Generator, the AXI Interconnect core
connects multiple masters to one slave, typically a memory controller.

• Built-in data-width conversion:

• Each master and slave connection can independently use data widths of 32, 64,
128, 256, 512, or 1024 bits wide:

- The internal crossbar can be configured to have a native data-width of 32, 64,
128, 256, 512, or 1024 bits.

- Data-width conversion is performed for each master and slave connection
that does not match the crossbar native data-width.

• When converting to a wider interface (upsizing), data is packed (merged)
optionally, when permitted by address channel control signals (CACHE
modifiable bit is asserted).

• When converting to a narrower interface (downsizing), burst transactions can be
split into multiple transactions if the maximum burst length would otherwise be
exceeded.

• Built-in clock-rate conversion:

• Each master and slave connection can use independent clock rates

• Synchronous integer-ratio (N:1 and 1:N) conversion to the internal crossbar native
clock-rate.

• Asynchronous clock conversion (uses more storage and incurs more latency than
synchronous conversion).

• The AXI Interconnect core exports reset signals resynchronized to the clock input
associated with each SI and MI slot.

http://www.xilinx.com

16 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

• Built-in AXI4-Lite protocol conversion:

• The AXI Interconnect core can connect to any mixture of AXI4 and AXI4-Lite
masters and slaves.

• The AXI Interconnect core saves transaction IDs and restores them during
response transfers, when connected to an AXI4-Lite slave.

- AXI4-Lite slaves do not need to sample or store IDs.

• The AXI Interconnect core detects illegal AXI4-Lite transactions from AXI4
masters, such as any transaction that accesses more than one word. It generates a
protocol-compliant error response to the master, and does not propagate the
illegal transaction to the AXI4-Lite slave.

• Write and read transactions are single-threaded to AXI4-Lite slaves, propagating
only a single address at a time, which typically nullifies the resource overhead of
separate write and read address signals.

• Built-in AXI3 protocol conversion:

• The AXI Interconnect core splits burst transactions of more than 16 beats from
AXI4 masters into multiple transactions of no more than 16 beats when connected
to an AXI3 slave.

• Optional register-slice pipelining:

• Available on each AXI channel connecting to each master and each slave.

• Facilitates timing closure by trading-off frequency vs. latency.

• One latency cycle per register-slice, with no loss in data throughput under all AXI
handshaking conditions.

• Optional data-path FIFO buffering:

• Available on write and read data paths connecting to each master and each slave.

• 32-deep LUT-RAM based.

• 512-deep block RAM based.

• Option to delay assertion of:

- AWVALID until the complete burst is stored in the W-channel FIFO

- ARVALID until the R-channel FIFO has enough vacancy to store the entire
burst length

• Selectable Interconnect Architecture:

• Shared-Address, Multiple-Data (SAMD) crossbar:

- Parallel crossbar pathways for write data and read data channels. When more
than one write or read data source has data to send to different destinations,
data transfers may occur independently and concurrently, provided AXI
ordering rules are met.

- Sparse crossbar data pathways according to configured connectivity map,
resulting in reduced resource utilization.

- One shared write address arbiter, plus one shared Read address arbiter.
Arbitration latencies typically do not impact data throughput when
transactions average at least three data beats.

• Shared Access Shared Data (SASD) mode (Area optimized):

- Shared write data, shared read data, and single shared address pathways.

- Issues one outstanding transaction at a time.

- Minimizes resource utilization.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 17
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

• Supports multiple outstanding transactions:

• Supports masters with multiple reordering depth (ID threads).

• Supports up to 16-bit wide ID signals (system-wide).

• Supports write response re-ordering, read data re-ordering, and read data
interleaving.

• Configurable write and read transaction acceptance limits for each connected
master.

• Configurable write and read transaction issuing limits for each connected slave.

• “Single-Slave per ID” method of cyclic dependency (deadlock) avoidance:

• For each ID thread issued by a connected master, the master can have outstanding
transactions to only one slave for writes and one slave for reads, at any time.

• Fixed priority and round-robin arbitration:

• 16 configurable levels of static priority.

• Round-robin arbitration is used among all connected masters configured with the
lowest priority setting (priority 0), when no higher priority master is requesting.

• Any SI slot that has reached its acceptance limit, or is targeting an MI slot that has
reached its issuing limit, or is trying to access an MI slot in a manner that risks
deadlock, is temporarily disqualified from arbitration, so that other SI slots can be
granted arbitration.

• Supports TrustZone security for each connected slave as a whole:

- If configured as a secure slave, only secure AXI accesses are permitted

- Any non-secure accesses are blocked and the AXI Interconnect core returns a
DECERR response to the master

• Support for Read-only and write-only masters and slaves, resulting in reduced
resource utilization.

AXI Interconnect Core Limitations

The AXI Interconnect core does not support the following AXI3 features:

• Atomic locked transactions; this feature was retracted by AXI4 protocol. A locked
transaction is changed to a non-locked transaction and propagated by the MI.

• Write interleaving; this feature was retracted by AXI4 protocol. AXI3 masters must be
configured as if connected to a slave with write interleaving depth of one.

• AXI4 QoS signals do not influence arbitration priority. QoS signals are propagated
from SI to MI.

• The AXI Interconnect core does not convert multi-beat bursts into multiple single-beat
transactions when connected to an AXI4-Lite slave.

• The AXI Interconnect core does not support low-power mode or propagate the AXI
C-channel signals.

• The AXI Interconnect core does not time out if the destination of any AXI channel
transfer stalls indefinitely. All AXI slaves must respond to all received transactions, as
required by AXI protocol.

• The AXI Interconnect core provides no address remapping.

• The AXI Interconnect core provides no built-in conversion to non-AXI protocols, such
as APB.

http://www.xilinx.com

18 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

• The AXI Interconnect core does not have clock-enable (ACLKEN) inputs. Consequently,
the use of ACLKEN is not supported among memory mapped AXI interfaces in Xilinx
systems.

Note: The ACLKEN signal is supported for Xilinx AXI4-Stream interfaces.

• When used in the CORE Generator tool flow, the AXI Interconnect core can only be
configured with one MI port (one connected slave device), and therefore performs no
address decoding.

AXI Interconnect Core Diagrams

Figure 2-6 illustrates a top-level AXI Interconnect.

The AXI Interconnect core consists of the SI, the MI, and the functional units that comprise
the AXI channel pathways between them. The SI accepts Write and Read transaction
requests from connected master devices. The MI issues transactions to slave devices. At
the center is the crossbar that routes traffic on all the AXI channels between the various
devices connected to the SI and MI.
The AXI Interconnect core also comprises other functional units located between the
crossbar and each of the interfaces that perform various conversion and storage functions.
The crossbar effectively splits the AXI Interconnect core down the middle between the
SI-related functional units (SI hemisphere) and the MI-related units (MI hemisphere).
The following subsection describes the use models for the AXI Interconnect core.

AXI Interconnect Core Use Models

The AXI Interconnect IP core connects one or more AXI memory-mapped master devices
to one or more memory-mapped slave devices. The following subsections describe the
possible use cases:

• Pass Through

• Conversion Only

• N-to-1 Interconnect

• 1-to-N Interconnect

• N-to-M Interconnect (Sparse Crossbar Mode)

• N-to-M Interconnect (Shared Access Mode)

Figure 2-6: Top-Level AXI Interconnect

AXI Interconnect

Slave
Interface

Master
Interface

SI Hemisphere MI Hemisphere

Crossbar

Master 0 Slave 0

Slave 1Master 1 R
eg

is
te

r
S

lic
es

R
eg

is
te

r
S

lic
es

U
p-

si
ze

rs

U
p-

si
ze

rs

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

D
at

a
F

IF
O

s

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

P
ro

to
co

l C
on

ve
rt

er
s

D
at

a
F

IF
O

s
X12047

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 19
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Pass Through

When there is only one master device and only one slave device connected to the AXI
Interconnect core, and the AXI Interconnect core is not performing any optional
conversion functions or pipelining, all pathways between the slave and master interfaces
degenerate into direct wire connections with no latency and consuming no logic
resources.
The AXI Interconnect core does, however, continue to resynchronize the
INTERCONNECT_ARESETN input to each of the slave and master interface clock domains
for any master or slave devices that connect to the ARESET_OUT_N outputs, which
consumes a small number of flip-flops.

Figure 2-7 is a diagram of the pass through use case.

Conversion Only

The AXI Interconnect core can perform various conversion and pipelining functions when
connecting one master device to one slave device. These are:

• Data width conversion

• Clock rate conversion

• AXI4-Lite slave adaptation

• AXI-3 slave adaptation

• Pipelining, such as a register slice or data channel FIFO

In these cases, the AXI Interconnect core contains no arbitration, decoding, or routing logic.
There could be latency incurred, depending on the conversion being performed.

Figure 2-7: Pass-through AXI Interconnect Use Case

Master 0 Slave 0

Interconnect

http://www.xilinx.com

20 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Figure 2-8 shows the one-to-one or conversion use case.

N-to-1 Interconnect

A common degenerate configuration of AXI Interconnect core is when multiple master
devices arbitrate for access to a single slave device, typically a memory controller.

In these cases, address decoding logic might be unnecessary and omitted from the AXI
Interconnect core (unless address range validation is needed).

Conversion functions, such as data width and clock rate conversion, can also be performed
in this configuration. Figure 2-9 shows the N to 1 AXI interconnection use case.
.

Figure 2-8: 1-to-1 Conversion AXI Interconnect Use Case

Figure 2-9: N-to-1 AXI Interconnect

X12049

Master 0 Slave 0

Interconnect

Conversion
and/or

Pipelining

X12050

Master 0

Master 1

Slave 0

Interconnect

A
rb

ite
r

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 21
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

1-to-N Interconnect

Another degenerative configuration of the AXI Interconnect core is when a single master
device, typically a processor, accesses multiple memory-mapped slave peripherals. In
these cases, arbitration (in the address and write data paths) is not performed. Figure 2-10,
shows the 1 to N Interconnect use case.

N-to-M Interconnect (Sparse Crossbar Mode)

The N-to-M use case of the AXI Interconnect features a Shared-Address Multiple-Data
(SAMD) topology, consisting of sparse data crossbar connectivity, with single-threaded
write and read address arbitration, as shown in Figure 2-11.

Figure 2-10: 1-to-N AXI Interconnect Use Case
X12051

Master 0

Slave 0

Slave 1

Interconnect

D
ec

od
er

/R
ou

te
r

Figure 2-11: Shared Write and Read Address Arbitration
X12052

Master 0

Master 1

Master 2

Slave 0

Slave 1

Slave 2

Interconnect

AW

AR

AW

AR

AW

AR

AW

AR

AW

AR

AW

AR

Write
Transaction
Arbiter

Read
Transaction
Arbiter

Router

Router

http://www.xilinx.com

22 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Figure 2-12 shows the sparse crossbar write and read data pathways.

Parallel write and read data pathways connect each SI slot (attached to AXI masters on the
left) to all the MI slots (attached to AXI slaves on the right) that it can access, according to
the configured sparse connectivity map. When more than one source has data to send to
different destinations, data transfers can occur independently and concurrently, provided
AXI ordering rules are met.

The write address channels among all SI slots (if > 1) feed into a central address arbiter,
which grants access to one SI slot at a time, as is also the case for the read address channels.
The winner of each arbitration cycle transfers its address information to the targeted MI
slot and pushes an entry into the appropriate command queue(s) that enable various data
pathways to route data to the proper destination while enforcing AXI ordering rules.

N-to-M Interconnect (Shared Access Mode)

When in Shared Access mode, the N-to-M use case of the AXI Interconnect core provides
for only one outstanding transaction at a time, as shown in Figure 2-13, page 23. For each
connected master, read transactions requests always take priority over writes. The aribter
then selects from among the requesting masters. A write or read data transfer is enabled to
the targeted slave device. After the data transfer (including write response) completes, the
next request is arbitrated. Shared Access mode minimizes the resources used to implement
the crossbar module of the AXI Interconnect.

Figure 2-12: Sparse Crossbar Write and Read Data Pathways
X12053

Interconnect
Master 0

Master 1

Master 2

Slave 0

Slave 1

Slave 2

W

R

W

R

W

R

W

R

W

R

W

R

Write Data Crossbar

Read Data Crossbar

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 23
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Width Conversion

The AXI Interconnect core has a parametrically-defined, internal, native data-width that
supports 32, 64, 128, 256, 512, and 1024 bits. The AXI data channels that span the crossbar
are sized to the “native” width of the AXI Interconnect, as specified by the
C_INTERCONNECT_DATA_WIDTH parameter.

When any SI slots or MI slots are sized differently, the AXI Interconnect core inserts width
conversion units to adapt the slot width to the AXI Interconnect core native width before
transiting the crossbar to the other hemisphere.

The width conversion functions differ depending on whether the data path width gets
wider (“up-sizing”) or more narrow (“down-sizing”) when moving in the direction from
the SI toward the MI. The width conversion functions are the same in either the SI
hemisphere (translating from the SI to the AXI Interconnect core native width) or the MI
hemisphere (translating from the AXI Interconnect core native width to the MI).

MI and SI slots have an associated individual parametric data-width value. The AXI
Interconnect core adapts each MI and SI slot automatically to the internal native
data-width as follows:

• When the data width of an SI slot is wider than the internal native data width of the
AXI Interconnect, a down-sizing conversion is performed along the pathways of the
SI slot.

• When the internal native data width of the AXI Interconnect core is wider than that of
an MI slot, a down-sizing conversion is performed along the pathways of the MI slot.

• When the data width of an SI slot is narrower than the internal native data width of
the AXI Interconnect, an up-sizing conversion is performed along the pathways of the
SI slot.

• When the internal native data width of the AXI Interconnect core is narrower than
that of an MI slot, an up-sizing conversion is performed along the pathways of the MI
slot.

Typically, the data-width of the AXI Interconnect core is matched to that of the most
throughput-critical peripheral, such as a memory controller, in the system design.

The following subsections describe the down-sizing and up-sizing behavior.

Figure 2-13: Shared Access Mode

http://www.xilinx.com

24 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Downsizing

Downsizers used in pathways connecting wide master devices are equipped to split burst
transactions that might exceed the maximum AXI burst length (even if such bursts are
never actually needed).

When the data width on the SI side is wider than that on the MI side and the transfer size
of the transaction is also wider than the data width on the MI side, then down-sizing is
performed and, in the transaction issued to the MI side, the number of data beats is
multiplied accordingly.

• For writes, data serialization occurs

• For reads, data merging occurs

The AXI Interconnect core sets the RRESP for each output data beat (on the SI) to the
worst-case error condition encountered among the input data beats being merged,
according to the following descending precedence order: DECERR, SLVERR, OKAY,
EXOKAY.

When the transfer size of the transaction is equal to or less than the MI side data width, the
transaction (address channel values) remains unchanged, and data transfers pass through
unchanged except for byte-lane steering. This applies to both writes and reads.

Upsizing

For upsizers in the SI hemisphere, data packing is performed (for INCR and WRAP bursts),
provided the AW/ARCACHE[1] bit (“Modifiable”) is asserted.

In the resulting transaction issued to the MI side, the number of data beats is reduced
accordingly.

• For writes, data merging occurs

• For reads, data serialization occurs

The AXI Interconnect core replicates the RRESP from each input data beat onto the RRESP
of each output data beat (on the SI).

Clock Conversions

Clock conversion comprises the following:

• A clock-rate reduction module performs integer (N:1) division of the clock rate from
its input (SI) side to its output (MI) side.

• A clock-rate acceleration module performs integer (1:N) multiplication of clock rate
from its input (SI) to output (MI) side.

• An asynchronous clock conversion module performs either reduction or acceleration
of clock-rates by passing the channel signals through an asynchronous FIFO.

For both the reduction and the acceleration modules, the sample cycle for the faster clock
domain is determined automatically. Each module is applicable to all five AXI channels.

The MI and SI each have a vector of clock inputs in which each bit synchronizes all the
signals of the corresponding interface slot. The AXI Interconnect core has its own native
clock input. The AXI Interconnect core adapts the clock rate of each MI and SI slot
automatically to the native clock rate of the AXI Interconnect.

Typically, the native clock input of the AXI Interconnect core is tied to the same clock
source as used by the highest frequency SI or MI slot in the system design, such as the MI
slot connecting to the main memory controller.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 25
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Pipelining

Under some circumstances, AXI Interconnect core throughput is improved by buffering
data bursts. This is commonly the case when the data rate at a SI or MI slot differs from the
native data rate of the AXI Interconnect core due to data width or clock rate conversion.

To accommodate the various rate change combinations, data burst buffers can be inserted
optionally at the various locations.

Additionally, an optional, two-deep register slice (skid buffer) can be inserted on each of
the five AXI channels at each SI or MI slot to help improve system timing closure.

Peripheral Register Slices

At the outer-most periphery of both the SI and MI, each channel of each interface slot can
be optionally buffered by a register slice. These are provided mainly to improve system
timing at the expense of one latency cycle.

Peripheral register slices are always synchronized to the SI or MI slot clock.

Data Path FIFOs

Under some circumstances, AXI Interconnect throughput is improved by buffering data
bursts. This is commonly the case when the data rate at an SI or MI slot differs from the
native data rate of the AXI Interconnect core due to data width or clock rate conversion. To
accommodate the various rate change combinations, you can optionally insert data burst
buffers at the following locations:

• The SI-side write data FIFO is located before crossbar module, after any SI-side width,
or clock conversion.

• The MI-side write data FIFO is located after the crossbar module, before any MI slot
width, clock, or protocol conversion.

• The MI-side Read data FIFO is located before (on the MI side) of the crossbar module,
after any MI-side width, or protocol conversion.

• The SI-side Read data FIFO is located after (on the SI side) of the crossbar module,
before any SI-side width, or clock conversion.

Data FIFOs are synchronized to the AXI Interconnect core native clock. The width of each
data FIFO matches the AXI Interconnect core native data width.

For more detail and the required signals and parameters of the AXI Interconnect core IP,
refer to the AXI Interconnect IP (DS768). Appendix C, Additional Resources, also contains
this link.

Connecting AXI Interconnect Core Slaves and Masters
You can connect the slave interface of one AXI Interconnect core module to the master
interface of another AXI Interconnect core with no intervening logic using an AXI-to-AXI
Connector (axi2axi_connector) IP. The axi2axi_connector IP provides the port connection
points necessary to represent the connectivity in the system, plus a set of parameters used
to configure the respective interfaces of the AXI Interconnect core modules being
connected.),

http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=ip+axi+doc;v=13.4;d=ds768_axi_interconnect.pdf
http://www.xilinx.com

26 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

AXI-To-AXI Connector Features

The features of the axi2axi_connector are:

• Connects the master interface of one AXI Interconnect core module to slave interface
of another AXI Interconnect core module.

• Directly connects all master interface signals to all slave interface signals.

• Contains no logic or storage, and functions as a bus bridge in EDK.

Description

The AXI slave interface of the axi2axi_connector (“connector”) module always connects to
one attachment point (slot) of the master interface of one AXI Interconnect core module
(the “upstream interconnect”). The AXI master interface of the connector always connects
to one slave interface slot of a different AXI Interconnect core module (the “downstream
interconnect”) as shown in Figure 2-14.

Using the AXI To AXI Connector

When using the AXI To AXI Connector (axi2axi_connector) you can cascade two AXI
Interconnect cores. The EDK tools set the data width and clock frequency parameters on
the axi2axi_connector IP so that the characteristics of the master and slave interfaces
match.

Also, the EDK tools auto-connect the clock port of the axi2axi_connector so that the
interfaces of the connected interconnect modules are synchronized by the same clock
source.

For more detail and the required signals and parameter of the AXI To AXI Connector, refer
to the AXI To AXI Connector IP Data Sheet (DS803). Appendix C, Additional Resources, also
contains this link.

Figure 2-14: Master and Slave Interface Modules Connecting Two AXI Interconnect cores

mb_0

AXI_Interconnect_0

AXI_Interconnect_1

AXI_Interconnect_2

slave_2

axi2axi_connector

slave_1

slave_3

M_AXI_IP

M_AXI_DP

M_AXI_IC

M_AXI_DC

X12036

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;t=ip+axi+doc;d=ds803_axi2axi_connector.pdf

AXI Reference Guide www.xilinx.com 27
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

External Masters and Slaves
When there is an AXI master or slave IP module that is not available as an EDK pcore (such
as a pure HDL module) that needs to be connected to an AXI Interconnect core inside the
EDK sub-module, these utility cores can be used for that the purpose. The AXI master or
slave module would remain in the top-level of the design, and the AXI signals would be
connected to the EDK sub system using this utility pcore.

Features

• Connects an AXI master or slave interface to the AXI Interconnect core IP.

• A master or slave AXI bus interface on one side and AXI ports on the other side.

• Other ports are modeled as an I/O interface, which can be made external, thereby
providing the necessary signals that can be connected to a top-level master or slave.

Figure 2-15 is a block diagram of the AXI external master connector.

Figure 2-16 shows a block diagram of the external slave connector.

Figure 2-15: EDK Sub-system using an External Master Connector

Individual AXI Ports made
external to sub-system

interface

Microblaze

EDK sub-system

Axi_ext_master_conn

ICAXI

DCAXI

S_AXI

M_AXI

Memory controllerAxi_interconnect

X12040

Figure 2-16: EDK Subsystem using an External Slave Connector

Microblaze

Axi_interconnect

ICAXI S_AXI Memory controller

DCAXI

EDK sub-system

Individual AXI Ports made
external to sub-system

interface

Axi_gpio

Axi_ext_slave_conn

S_AXI

S_AXI

X12075

http://www.xilinx.com

28 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

The Platform Studio IP Catalog contains the external master and external slave connectors.
For more information, refer to the Xilinx website:
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm.
Appendix C, Additional Resources, also contains this link.

Data Mover

The AXI Data Mover is an important interconnect infrastructure IP that enables high
throughput transfer of data between the AXI4 memory-mapped domain to the
AXI4-Stream domain. It provides Memory Map to Stream and Stream to Memory Map
channels that operate independently in a full, duplex-like method. The Data Mover IP has
the following features:

• Enables 4k byte address boundary protection

• Provides automatic burst partitioning

• Provides the ability to queue multiple transfer requests.

It also provides byte-level data realignment allowing memory reads and writes to any
byte offset location.
It is recommended to use AXI DataMover as a bridge between AXI4 Stream and AXI4
Memory Map Interfaces for both write and read operations where AXI4 Stream Master
controls data flow through command and status bus. AXI DataMover is available in both
CORE Generator andXPS. Figure 2-17 shows a block diagram of the Data Mover
functionality. See more information on the product page
http://www.xililnx.com/products/intellectual-property/axi_datamover.htm

Figure 2-17: Data Mover Block Diagram

http://www.xilinx.com
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xililnx.com/products/intellectual-property/axi_datamover.htm

AXI Reference Guide www.xilinx.com 29
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Centralized DMA
Xilinx provides a Centralized DMA core for AXI. This core replaces legacy PLBv4.6
Centralized DMA with an AXI4 version that contains enhanced functionality and higher
performance. Figure 2-18 shows a typical embedded system architecture incorporating the
AXI (AXI4 and AXI4-Lite) Centralized DMA.

The AXI4 Centralized DMA performs data transfers from one memory mapped space to
another memory mapped space using high speed, AXI4, bursting protocol under the
control of the system microprocessor.

Figure 2-18: Typical Use Case for AXI Centralized DMA

AXI CDMA

CPU
(AXI

MicroBlaze)

AXI4 MMap
Interconnect
(AXI4-Lite)

AXI
BRAM

AXI
DDRx

Registers

Scatter
Gather
Engine

AXI4

AXI4

AXI4 Read

AXI4 Write

AXI4-Lite

AXI4

AXI Intc
AXI4-Lite

AXI4-Lite

AXI4 MMap
Interconnect

(AXI4)

DP

DC

IC

AXI4

AXI4

Interrupt

Interrupts In

Interrupt Out
(To AXI Intc)

AXI4-Stream

AXI4-Stream

DataMover

X12037

http://www.xilinx.com

30 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

AXI Centralized DMA Summary

The AXI Centralized DMA provides the same simple transfer mode operation as the legacy
PLBv4.6 Centralized DMA. A simple mode transfer is defined as that which the CPU
programs the Centralized DMA register set for a single transfer and then initiates the
transfer. The Centralized DMA:

• Performs the transfer
• Generates an interrupt when the transfer is complete
• Waits for the microprocessor to program and start the next transfer

Also, the AXI Centralized DMA includes an optional data realignment function for 32- and
64-bit bus widths. This feature allows addressing independence between the transfer
source and destination addresses.

AXI Centralized DMA Scatter Gather Feature

In addition to supporting the legacy PLBv4.6 Centralized DMA operations, the AXI
Centralized DMA has an optional Scatter Gather (SG) feature.

SG enables the system CPU to off-load transfer control to high-speed hardware
automation that is part of the Scatter Gather engine of the Centralized DMA. The SG
function fetches and executes pre-formatted transfer commands (buffer descriptors) from
system memory as fast as the system allows with minimal required CPU interaction. The
architecture of the Centralized DMA separates the SG AXI4 bus interface from the AXI4
data transfer interface so that buffer descriptor fetching and updating can occur in parallel
with ongoing data transfers, which provides a significant performance enhancement.

DMA transfer progress is coordinated with the system CPU using a programmable and
flexible interrupt generation approach built into the Centralized DMA. Also, the AXI
Centralized DMA allows the system programmer to switch between using Simple Mode
transfers and SG-assisted transfers using the programmable register set.

The AXI Centralized DMA is built around the new high performance AXI DataMover
helper core which is the fundamental bridging element between AXI4-Stream and AXI4
memory mapped buses. In the case of AXI Centralized DMA, the output stream of the
DataMover is internally looped back to the input stream. The SG feature is based on the
Xilinx SG helper core used for all Scatter Gather enhanced AXI DMA products.

Centralized DMA Configurable Features

The AXI4 Centralized DMA lets you trade-off the feature set implemented with the FPGA
resource utilization budget. The following features are parameterizable at FPGA
implementation time:

• Use DataMover Lite for the main data transport (Data Realignment Engine (DRE) and
SG mode are not supported with this data transport mechanism)

• Include or omit the Scatter Gather function
• Include or omit the DRE function (available for 32- and 64-bit data transfer bus widths

only)
• Specify the main data transfer bus width (32, 64, 128, 256, 512, and 1024 bits)
• Specify the maximum allowed AXI4 burst length the DataMover will use during data

transfers

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 31
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Centralized DMA AXI4 Interfaces

The following table summarizes the four external AXI4 Centralized DMA interfaces in
addition to the internally-bridged DataMover stream interface within the AXI Centralized
DMA function.

Ethernet DMA
The AXI4 protocol adoption in Xilinx embedded processing systems contains an Ethernet
solution with Direct Memory Access (DMA). This approach blends the performance
advantages of AXI4 with the effective operation of previous Xilinx Ethernet IP solutions.

Figure 2-19, page 32 provides high-level block diagram of the AXI DMA.

Table 2-1: AXI Centralized DMA AXI4 Interfaces

Interface AXI Type Data Width Description

Control AXI4-Lite slave 32
Used to access the AXI Centralized DMA internal registers.
This is generally used by the system processor to control
and monitor the AXI Centralized DMA operations.

Scatter Gather AXI4 master 32

An AXI4 memory mapped master that is used by the AXI
Centralized DMA to read DMA transfer descriptors from
System Memory and then to write updated descriptor
information back to System Memory when the associated
transfer operation has completed.

Data MMap Read
AXI4 Read

master

32, 64,

128, 256, 512,
1024

Reads the transfer payload data from the memory mapped
source address. The data width is parameterizable to be 32,
64, 128, 256, 512, and 1024 bits wide.

Data MMap Write
AXI4 Write

master

32, 64,
128, 256, 512,

1024

Writes the transfer payload data to the memory mapped
destination address. The data width is parameterizable to be
32, 64, 128, 256, 512, and 1024 bits wide, and is the same
width as the Data Read interface.

http://www.xilinx.com

32 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Figure 2-20 shows a typical system architecture for the AXI Ethernet.

Figure 2-19: AXI DMA High Level Block Diagram

AXI DMA

S2MM DMA Controller

MM2S DMA Controller

AXI DataMover
A

X
I L

ite
 S

la
ve

 In
te

rf
ac

e

MM2S_IntrOut

S2MM_IntrOut

Reset
Module

Register Module

MM2S_DMACR
MM2S_DMASR

MM2S_CURDESC

Reserved
MM2S_TAILDESC

Reserved

S2MM_DMACR
S2MM_DMASR

S2MM_CURDESC

Reserved
S2MM_TAILDESC

Reserved

A
X

I C
on

tro
l

In
te

rf
ac

e
A

X
I S

ta
tu

s
In

te
rfa

ce

SG Engine
(Interrupt Coalescing)

SG Interface

AXI Memory Map Read (MM2S)

AXI Memory Map Write (S2MM)

AXI Control
Stream (MM2S)

AXI Status Stream
(S2MM)

AXI Stream
(MM2S)

AXI Stream
(S2MM)

AXI Lite

AXI Memory Map SG Read / Write

SG Interface

X12038

Figure Top x-ref 3

Figure 2-20: Typical Use Case for AXI DMA and AXI4 Ethernet

CPU
(AXI

MicroBlaze)

AXI4 MMap
Interconnect

AXI Ethernet

AXI
BRAM

AXI
DDRx

Registers

AXI DMA

Scatter
Gather
Engine

DataMover

Ethernet
Control

and Status

Registers

AXI4-Lite

AXI4-Stream

AXI4-Stream

AXI4-Stream

AXI4-Stream

Tx
Payload

Rx
Payload

Tx
Control

Rx
Status

AXI Intc

AXI4 MMap
Interconnect

DP

DC

IC

AXI4

Interrupt

Interrupts In

Interrupt Out
(To AXI Intc)

Interrupt Out
(To AXI Intc)

AXI4-Stream

AXI4-Stream

AVB

Ethernet Tx

Ethernet Rx

MIIM

AXI4-Lite
AXI4-Lite

AXI4-Lite

AXI4

AXI4

AXI4

AXI4

AXI4 Read

AXI4 Write

X12039

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 33
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

As shown in Figure 2-20, page 32, the AXI Ethernet is now paired with a new AXI DMA IP.
The AXI DMA replaces the legacy PLBv4.6 SDMA function that was part of the PLBv4.6
Multi-Port Memory Controller (MPMC).

The AXI DMA is used to bridge between the native AXI4-Stream protocol on the AXI
Ethernet to AXI4 memory mapped protocol needed by the embedded processing system.

The AXI DMA core can also be connected to a user system other than an Ethernet-based
AXI IP. In this case, the parameter C_SG_INCLUDE_STSCNTRL_STRM must be set to 0 to
exclude status and control information and use it for payload only.

AXI4 DMA Summary

The AXI DMA engine provides high performance direct memory access between system
memory and AXI4-Stream type target peripherals. The AXI DMA provides Scatter Gather
(SG) capabilities, allowing the CPU to offload transfer control and execution to hardware
automation.

The AXI DMA as well as the SG engines are built around the AXI DataMover helper core
(shared sub-block) that is the fundamental bridging element between AXI4-Stream and
AXI4 memory mapped buses.

AXI DMA provides independent operation between the Transmit channel Memory Map to
Slave (MM2S) and the Receive channel Slave to Memory Map (S2MM), and provides
optional independent AXI4-Stream interfaces for offloading packet metadata.

An AXI control stream for MM2S provides user application data from the SG descriptors to
be transmitted from AXI DMA.

Similarly, an AXI status stream for S2MM provides user application data from a source IP
like AXI4 Ethernet to be received and stored in a SG descriptors associated with the
Receive packet.

In an AXI Ethernet application, the AXI4 control stream and AXI4 status stream provide
the necessary functionality for performing checksum offloading.

Optional SG descriptor queuing is also provided, allowing fetching and queuing of up to
four descriptors internally in AXI DMA. This allows for very high bandwidth data transfer
on the primary data buses.

http://www.xilinx.com

34 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

DMA AXI4 Interfaces

The Xilinx implementation for DMA uses the AXI4 capabilities extensively. Table 2-2
summarizes the eight AXI4 interfaces used in the AXI DMA function.

Table 2-2: AXI DMA Interfaces

Interface AXI Type
Data

Width
Description

Control AXI4-Lite slave 32 Used to access the AXI DMA internal registers. This is
generally used by the System Processor to control and
monitor the AXI DMA operations.

Scatter Gather AXI4 master 32 An AXI4 memory mapped master used by the AXI4
DMA to Read DMA transfer descriptors from system
memory and write updated descriptor information back
to system memory when the associated transfer
operation is complete.

Data MM Read AXI4 Read
master

32, 64,
128, 256,
512, 1024

Transfers payload data for operations moving data from
the memory mapped side of the DMA to the Main Stream
output side.

Data MM Write AXI4 Write
master

32, 64,
128, 256,
512, 1024

Transfers payload data for operations moving data from
the Data Stream In interface of the DMA to the memory
mapped side of the DMA.

Data Stream Out AXI4-Stream
master

32, 64,
128, 256,
512, 1024

Transfers data read by the Data MM Read interface to the
target receiver IP using the AXI4-Stream protocol.

Data Stream In AXI4-Stream
slave

32, 64,
128, 256,
512, 1024

Received data from the source IP using the AXI4-Stream
protocol. Transferred the received data to the Memory
Map system using the Data MM Write Interface.

Control Stream Out AXI4-Stream
master

32 The Control stream Out is used to transfer control
information imbedded in the Tx transfer descriptors to
the target IP.

Status Stream In AXI4-Stream
slave

32 The Status Stream In receives Rx transfer information
from the source IP and updates the data in the associated
transfer descriptor and written back to the System
Memory using the Scatter Gather interface during a
descriptor update.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 35
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

Video DMA
The AXI4 protocol Video DMA (VDMA) provides a high bandwidth solution for Video
applications. It is a similar implementation to the Ethernet DMA solution.

Figure 2-21 shows a top-level AXI4 VDMA block diagram.

Figure 2-22, page 36 illustrates a typical system architecture for the AXI VDMA.

Figure 2-21: AXI VDMA High-Level Block Diagram

AXI VDMA

S2MM DMA Controller

MM2S DMA Controller

AXI DataMover

A
X

I L
ite

 S
la

ve
 In

te
rfa

ce

MM2S_IntrOut

S2MM_IntrOut

Reset
Module

Register Module
MM2S_DMACR
MM2S_DMASR

MM2S_CURDESC

S2MM_DMACR
S2MM_DMASR

S2MM_CURDESC
Reserved

SG Engine
(Interrupt Coalescing)

AXI Memory Map Read (MM2S)

AXI Memory Map Write (S2MM)

AXI MM2S
Stream

AXI S2MM
Stream

AXI Lite

AXI Memory Map SG Read

MM2S
Gen-Lock

MM2S
FSync

S2MM
Gen-Lock

S2MM
FSync

MM2S_TAILDESC
Reserved

S2MM_TAILDESC
Reserved

MM2S Frame Size

MM2S Stride

MM2S Strt Addr 0

MM2S Strt Addr N
:

MM2S Frame Size

MM2S Stride

MM2S Strt Addr 0

MM2S Strt Addr N
:

MM2S Frame Size

MM2S Stride

MM2S Strt Addr 0

MM2S Strt Addr N
:

MM2S Frame Size

MM2S Stride

MM2S Strt Addr 0

MM2S Strt Addr N
:

axi_resetn

m_axis_mm2s_aresetn
s_axis_s2mm_aresetn

Line
Buffer

Line
Buffer

MM2S Line
Bufffer Status

S2MM Line
Bufffer Status

Down
Sizer

Up
Sizer

Reserved

x12054

http://www.xilinx.com

36 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

AXI VDMA Summary

The AXI VDMA engine provides high performance direct memory access between system
memory and AXI4-Stream type target peripherals. The AXI VDMA provides Scatter
Gather (SG) capabilities also, which allows the CPU to offload transfer control and
execution to hardware automation. The AXI VDMA and the SG engines are built around
the AXI DataMover helper core which is the fundamental bridging element between
AXI4-Stream and AXI4 memory mapped buses.

AXI VDMA provides circular frame buffer access for up to 32 frame buffers and provides
the tools to transfer portions of video frames or full video frames.

The VDMA provides the ability to “park” on a frame also, allowing the same video frame
data to be transferred repeatedly.

VDMA provides independent frame synchronization and an independent AXI clock,
allowing each channel to operate on a different frame rate and different pixel rate. To
maintain synchronization between two independently functioning AXI VDMA channels,
there is an optional Gen-Lock synchronization feature.

Gen-Lock provides a method of synchronizing AXI VDMA slaves automatically to one or
more AXI VDMA masters such that the slave does not operate in the same video frame
buffer space as the master. In this mode, the slave channel skips or repeats a frame
automatically. Either channel can be configured to be a Gen-Lock slave or a Gen-Lock
master.

For video data transfer, the AXI4-Stream ports can be configured from 8 bits up to 1024 bits
wide in multiples of 8. For configurations where the AXI4-Stream port is narrower than the
associated AXI4 memory map port, the AXI VDMA upsizes or downsizes the data
providing full bus width burst on the memory map side. It also supports an asynchronous
mode of operation where all clocks are treated asynchronously.

Figure 2-22: Typical Use Case for AXI VDMA and Video IP

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 37
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

VDMA AXI4 Interfaces

Table 2-3 lists and describes six AXI4 interfaces of the AXI DMA function.

Memory Control IP and the Memory Interface Generator
There are two DDRx (SDRAM) AXI memory controllers available in the IP catalog.

Because the Virtex-6 and Spartan-6 devices have natively different memory control
mechanisms (Virtex-6 uses a fabric-based controller and Spartan-6 has an on-chip Memory
Control Block (MCB)), the description of memory control is necessarily device-specific.
The following subsections describe AXI memory control by Virtex-6 and Spartan-6
devices.

The Virtex-6 and Spartan-6 memory controllers are available in two different software
packages:

• In EDK, as the axi_v6_ddrx or the axi_s6_ddrx memory controller core.

• In the CORE™ Generator interface, through the Memory Interface Generator (MIG)
tool.

The underlying HDL code between the two packages is the same with different wrappers.

The flexibility of the AXI4 interface allows easy adaptation to both controller types.

Table 2-3: AXI VDMA Interfaces

Interface AXI Type Data Width Description

Control AXI4-Lite slave 32 Accesses the AXI VDMA internal registers. This is
generally used by the System Processor to control
and monitor the AXI VDMA operations.

Scatter Gather AXI4 master 32 An AXI4 memory mapped master that is used by the
AXI VDMA to read DMA transfer descriptors from
System Memory. Fetched Scatter Gather descriptors
set up internal video transfer parameters for video
transfers.

Data MM Read AXI4 Read master 32, 64,
128, 256, 512,

1024

Transfers payload data for operations moving data
from the memory mapped side of the DMA to the
Main Stream output side.

Data MM Write AXI4 Write master 32, 64,
128, 256, 512,

1024

Transfers payload data for operations moving data
from the Data Stream In interface of the DMA to the
memory mapped side of the DMA.

Data Stream Out AXI4-Stream master 8,16, 32,
64, 128, 256,

512, 1024

Transfers data read by the Data MM Read interface to
the target receiver IP using the AXI4-Stream
protocol.

Data Stream In AXI4-Stream slave 8, 16, 32,
64, 128, 256,

512, 1024

Receives data from the source IP using the
AXI4-Stream protocol. The data received is then
transferred to the Memory Map system via the Data
MM Write Interface.

http://www.xilinx.com

38 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

Virtex-6

The Virtex-6 memory controller solution is provided by the Memory Interface Generator
(MIG) tool and is updated with an optional AXI4 interface.

This solution is available through EDK also, with an AXI4-only interface as the
axi_v6_ddrx memory controller.

The axi_v6_ddrx memory controller uses the same Hardware Design Language (HDL)
logic and uses the same GUI, but is packaged for EDK processor support through XPS. The
Virtex-6 memory controller is adapted with an AXI4 Slave Interface (SI) through an AXI4
to User Interface (UI) bridge. The AXI4-to-UI bridge converts the AXI4 slave transactions
to the MIG Virtex-6 UI protocol. This supports the same options that were previously
available in the Virtex-6 memory solution.

The optimal AXI4 data width is the same as the UI data width, which is four times the
memory data width. The AXI4 memory interface data width can be smaller than the UI
interface but is not recommended because it would result in a higher area, lower timing/
performance core to support the width conversion.

The AXI4 interface maps transactions over to the UI by breaking each of the AXI4
transactions into smaller stride, memory-sized transactions. The Virtex-6 memory
controller then handles the bank/row management for higher memory utilization.

Figure 2-23 shows a block diagram of the Virtex-6 memory solution with the AXI4
interface.

Spartan-6 Memory Control Block

The Spartan-6 device uses the hard Memory Control Block (MCB) primitive native to that
device. The Spartan-6 MCB solution was adapted with an AXI4 memory mapped Slave
Interface (SI).

To handle AXI4 transactions to external memory on Spartan-6 architectures requires a
bridge to convert the AXI4 transactions to the MCB user interface.

Because of the similarities between the two interfaces, the AXI4 SI can be configured to be
“lightweight,” by connecting a master that does not issue narrow bursts and has the same
native data width as the configured MCB interface.

Figure 2-23: Virtex-6 Memory Control Block Diagram

axi_v6_ddrx (EDK) or memc_ui_top (COREGen) top level

DDR2 /
DDR3 PHY

Virtex-6
Memory

Controller

AXI4 Slave
Interface

Block
DDR2 / DDR3 DFINative

Interface

User
Interface

bllock

UI
Interface

AXI4
Interface

DDR2 or
DDR3

SDRAM
external

AXI4 Master

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 39
UG761 (v13.4) January 18, 2012

Xilinx AXI Infrastructure IP

The AXI4 bridge:

• Converts AXI4 incremental (INCR) commands to MCB commands in a 1:1 fashion for
transfers that are 16 beats or less.

• Breaks down AXI4 transfers greater than 16 beats into 16-beat maximum transactions
sent over the MCB protocol.

This allows a balance between performance and latency in multi-ported systems. AXI4
WRAP commands can be broken into two MCB transactions to handle the wraps on the
MCB interface, which does not natively support WRAP commands natively.

The axi_s6_ddrx core and Spartan-6 AXI MIG core from CORE Generator support all
native port configurations of the MCB including 32, 64, and 128 bit wide interfaces with up
to 6 ports (depending on MCB port configuration). Figure 2-24 shows a block diagram of
the AXI Spartan-6 memory solution.

For more detail on memory control, refer to the memory website documents at
http://www.xilinx.com/products/technology/memory-solutions/index.htm.

Figure 2-24: Spartan-6 Memory Solution Block Diagram

X12046

axi_s6_ddrx or mcb_ui_top

mcb_raw_wrapper

fpga boundary

MCB

MCB Soft Calibration Logic

AXI4 Master

AXI4 Master

AXI4 Master AXI4 Slave
Interface 5

AXI4 Slave
Interface 1

AXI4 Slave
Interface 0

LPDDR/
DDR/
DDR2/
DDR3

SDRAM

Port 0

Port 1

Port 5

http://www.xilinx.com/products/technology/memory-solutions/index.htm
http://www.xilinx.com

40 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 2: AXI Support in Xilinx Tools and IP

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 41
UG761 (v13.4) January 18, 2012

Chapter 3

AXI Feature Adoption in Xilinx FPGAs

This chapter describes how Xilinx® utilized specific features from the AXI standard in
Xilinx IP. The intention of this chapter is to familiarize the IP designer with various
AXI-related design and integration choices.

Memory Mapped IP Feature Adoption and Support
Xilinx has implemented and is supporting a rich feature set from AXI4 and AXI4-Lite to
facilitate interoperability among memory mapped IP from Xilinx developers, individual
users, and third-party partners.

Table 3-1 lists the key aspects of Xilinx AXI4 and AXI4-Lite adoption, and the level to
which Xilinx IP has support for, and implemented features of, the AXI4 specification.

Table 3-1: Xilinx AXI4 and AXI4-Lite Feature Adoption and Support

AXI Feature Xilinx IP Support

READY/VALIDY
Handshake

Full forward and reverse direction flow control of AXI protocol-defined READY/VALID
handshake.

Transfer Length AXI4 memory mapped burst lengths of:

· 1 to 256 beats for incrementing bursts and
· 1 to 16 beats for wrap bursts.

Fixed bursts should not be used with Xilinx IP.

Fixed bursts do not cause handshake-level protocol violations, but this behavior is undefined
or can be aliased into an incrementing burst.

Transfer Size / Data
Width

IP can be defined with native data widths of 32, 64, 128, 256, 512, and 1024 bits wide.

For AXI4-Lite, the supported data width is 32 bits only.

The use of AXI4 narrow bursts is supported but is not recommended. Use of narrow bursts
can decrease system performance and increase system size.

Where Xilinx IP of different widths need to communicate with each other, the AXI
Interconnect provides data width conversion features.

Read/Write only The use of read/write, read-only, or write-only interfaces.

Many IP, including the AXI Interconnect, perform logic optimizations when an interface is
configured to be Read-only or Write-only.

AXI3 vs. AXI4 Designed to support AXI4 natively. Where AXI3 interoperability is required, the AXI
Interconnect contains the necessary conversion logic to allow AXI3 and AXI4 devices to
connect.

AXI3 write interleaving is not supported and should not be used with Xilinx IP.

Note: The AXI3 write Interleaving feature was removed from the AXI4 specification.

http://www.xilinx.com

42 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Lock / Exclusive Access No support for locked transfers.

Xilinx infrastructure IP can pass exclusive access transactions across a system, but Xilinx IP
does not support the exclusive access feature. All exclusive access requests result in “OK”
responses.

Protection/Cache Bits Infrastructure IP passes protection and cache bits across a system, but Endpoint IP generally
do not contain support for dynamic protection or cache bits.

· Protections bits should be constant at 000 signifying a constantly secure transaction type.
· Cache bits should generally be constant at 0011 signifying a bufferable and modifiable

transaction.

This provides greater flexibility in the infrastructure IP to transport and modify transactions
passing through the system for greater performance.

Quality of Service (QoS)
Bits

Infrastructure IP passes QoS bits across a system.

Endpoint IP generally ignores the QoS bits.

REGION Bits The Xilinx AXI Interconnect generates REGION bits based upon the Base/High address
decoder ranges defined in the address map for the AXI interconnect.

Xilinx infrastructure IP, such as register slices, pass region bits across a system.

Some Endpoint slave IP supporting multiple address ranges might use region bits to avoid
redundant address decoders.

AXI Master Endpoint IP do not generate REGION bits.

User Bits Infrastructure IP passes user bits across a system, but Endpoint IP generally ignores user bits.

The use of user bits is discouraged in general purpose IP due to interoperability concerns.

However the facility to transfer user bits around a system allows special purpose custom
systems to be built that require additional transaction-based sideband signaling. An example
use of USER bits would be for transferring parity or debug information.

Reset Xilinx IP generally deasserts all VALID outputs within eight cycles of reset, and have a reset
pulse width requirement of 16 cycles or greater.

Holding AXI ARESETN asserted for 16 cycles of the slowest AXI clock is generally a sufficient
reset pulse width for Xilinx IP.

DSP IP has a requirement of 2 cycles for ARESETN on the AXI4-Stream interface.

Low Power Interface Not Supported. The optional AXI low power interfaces, CSYSREQ, CSYSACK, and CACTIVE
are not present on IP interfaces.

Table 3-1: Xilinx AXI4 and AXI4-Lite Feature Adoption and Support (Cont’d)

AXI Feature Xilinx IP Support

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 43
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

AXI4-Stream Adoption and Support
To simplify interoperability, Xilinx IP requiring streaming interfaces use a strict subset of
the AXI4-Stream protocol.

AXI4-Stream Signals
Table 3-2 lists the AXI4-Stream signals, status, and notes on usage.

Numerical Data in an AXI4-Stream

An AXI4-Stream channel is a method of transferring data rom a master to a slave. To enable
interoperability, both the master and slave must agree on the correct interpretation of those
bits.

In Xilinx IP, streaming interfaces are frequently used to transfer numerical data
representing sampled physical quantities (for example: video pixel data, audio data, and
signal processing data). Interoperability support requires a consistent interpretation of
numerical data.

Numerical data streams within Xilinx IP are defined in terms of logical and physical views.
This is especially important to understand in DSP applications where information can be
transferred essentially as data structures.

• The logical view describes the application-specific organization of the data.

• The physical view describes how the logical view is mapped to bits and the
underlying AXI4-Stream signals.

Simple vectors of values represent numerical data at the logical level. Individual values
can be real or complex quantities depending on the application. Similarly the number of
elements in the vector will be application-specific.

Table 3-2: AXI4-Stream Signals

Signal Status Notes

TVALID Required

TREADY Optional TREADY is optional, but highly recommended.

TDATA Optional

TSTRB Optional Not typically used by end-point IP; available for sparse stream
signalling.

Note: For marking packet remainders, TKEEP use rather than
TSTRB.

TKEEP Absent Null bytes are only used for signaling packet remainders.
Leading or intermediate Null bytes are generally not
supported.

TLAST Optional

TID Optional Not typically used by end-point IP; available for use by
infrastructure IP.

TDEST Optional Not typically used by end-point IP; available for use by
infrastructure IP.

TUSER Optional

http://www.xilinx.com

44 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

At the physical level, the logical view must be mapped to physical wires of the interface.
Logical values are represented physically by a fundamental base unit of bit width N, where
N is application-specific. In general:

• N bits are interpreted as a fixed point quantity, but floating point quantities are also
permitted.

• Real values are represented using a single base unit.

• Complex values are represented as a pair of base units signifying the real component
followed by the imaginary component.

To aid interoperability, all logical values within a stream are represented using base units
of identical bit width.

Before mapping to the AXI4-Stream signal, TDATA, the N bits of each base unit are rounded
up to a whole number of bytes. As examples:

• A base unit with N=12 is packed into 16 bits of TDATA.

• A base unit with N=20 is packed into 24 bits of TDATA.

The AXI4-Stream protocol requires that TDATA ports of the IP have a width in multiples of
8. It is a specification violation to define an AXI4-Stream IP with a TDATA port width that
is not a multiple of 8, therefore, it is a requirement to round up TDATA widths to byte
multiples. This simplifies interfacing with memory-orientated systems, and also allows the
use of AXI infrastructure IP, such as the AXI Interconnect, to perform upsizing and
downsizing.

By convention, the additional packing bits are ignored at the input to a slave; they
therefore use no additional resources and are removed by the back-end tools. To simplify
diagnostics, masters drive the unused bits in a representative manner, as follows:

• Unsigned quantities are zero-extended (the unused bits are zero).

• Signed quantities are sign-extended (the unused bits are copies of the sign bit).

The width of TDATA can allow multiple base units to be transferred in parallel in the same
cycle; for example, if the base unit is packed into 16 bits and TDATA signal width was 64
bits, four base units could be transferred in parallel, corresponding to four scalar values or
two complex values. Base units forming the logical vector are mapped first spatially
(across TDATA) and then temporally (across consecutive transfers of TDATA).

Deciding whether multiple sub-fields of data (that are not byte multiples) should be
concatenated together before or after alignment to byte boundaries is generally
determined by considering how atomic is the information. Atomic information is data that
can be interpreted on its own whereas non-atomic information is incomplete for the
purpose of interpreting the data.

For example, atomic data can consist of all the bits of information in a floating point
number. However, the exponent bits in the floating point number alone would not be
atomic. When packing information into TDATA, generally non-atomic bits of data are
concatenated together (regardless of bit width) until they form atomic units. The atomic
units are then aligned to byte boundaries using pad bits where necessary.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 45
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

Real Scalar Data Example

A stream of scalar values can use two, equally valid, uses of the optional TLAST signal.
This is illustrated in the following example.

Consider a numerical stream with characteristics of the following values:

This would be represented as an AXI4-Stream, as shown in Figure 3-1.

Scalar values can be considered as not packetized at all, in which case TLAST can
legitimately be driven active-Low (TLASTA); and, because TLAST is optional, it could be
removed entirely from the channel also.

Logical type Unsigned Real

Logical vector length 1 (for example, scalar value)

Physical base unit 12-bit fixed point

Physical base unit packed width 16 bits

Physical TDATA width 16 bits

Figure 3-1: Real Scalar (Unsigned) Data Example in an AXI4-Stream

X12056

http://www.xilinx.com

46 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Alternatively, scalar values can also be considered as vectors of unity length, in which case
TLAST should be driven active-High (TLASTB). As the value type is unsigned, the unused
packing bits are driven 0 (zero extended).

Similarly, for signed data the unused packing bits are driven with the sign bits
(sign-extended), as shown in Figure 3-2:

Complex Scalar Data Example

Consider a numerical stream with the following characteristics:

This would be represented as an AXI4-Stream, as shown in Figure 3-3:

Where re(X) and im(X) represent the real and imaginary components of X respectively.

Figure 3-2: Alternative (Sign-Extended) Scalar Value Example

X12057

TDATA[15] ... TDATA[12]

Logical type Signed Complex

Logical vector length 1 (for example: scalar)

Physical base unit 12 bit fixed point

Physical base unit packed width 16 bits

Physical TDATA width 16 bits

Figure 3-3: Complex Scalar Data Example in AXI4-Stream

X12058

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 47
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

Note: For simplicity, sign extension into TDATA[15:12] is not illustrated here. A complex value is
transferred every two clock cycles.

The same data can be similarly represented on a channel with a TDATA signal width of 32
bits; the wider bus allows a complex value to be transferred every clock cycle, as shown in
Figure 3-4:

The two representations in the preceding figures of the same data (serial and parallel)
show that data representation can be tailored to specific system requirements. For
example, a:

• High throughput processing engine such as a Fast Fourier Transform (FFT) might
favor the parallel form

• MAC-based Finite Impulse Response (FIR) might favor the serial form, thus enabling
Time Division Multiplexing (TDM) data path sharing

To enable interoperability of sub-systems with differing representation, you need a
conversion mechanism. This representation was chosen to enable simple conversions
using a standard AXI infrastructure IP:

• Use an AXI4-Stream-based upsizer to convert the serial form to the parallel form.

• Use an AXI4-Stream-based downsizer to convert the parallel form to the serial form.

Vector Data Example

Consider a numerical stream with the characteristics listed in the following table:

Figure 3-4: Complex Scalar Example with 32-Bit TDATA Signal

X12059

Logical type Signed Complex

Logical vector length 4

Physical base unit 12 bit fixed point

Physical base unit packed width 16 bits

Physical TDATA width 16 bits

http://www.xilinx.com

48 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Figure 3-5 shows the AXI4-Stream representation:

As for the scalar case, the same data can be represented on a channel with TDATA width of
32 bits, as shown in Figure 3-6:

Figure 3-5: Numerical Stream Example

X12060

Figure 3-6: AXI4-Stream Scalar Example

X12061

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 49
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

The degree of parallelism can be increased further for a channel with TDATA width of 64
bits, as shown in Figure 3-7:

Full parallelism can be achieved with TDATA width of 128 bits, as shown in Figure 3-8:

Figure 3-7: TDATA Example with 64-Bits

x12062

Figure 3-8: 128 Bit TDATA Example

X12063

http://www.xilinx.com

50 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

As shown for the scalar data in the preceding figures, there are multiple representations
that can be tailored to the application.

Similarly, AXI4-Stream upsizers and downsizers can be used for conversion.

Packets and NULL Bytes

The AXI4-Stream protocol lets you specify packet boundaries using the optional TLAST
signal.

In many situations this is sufficient; however, by definition, the TLAST signal indicates the
size of the data at the end of the packet, while many IP require packet size at the beginning.
In such situations, where packet size must be specified at the beginning, the IP typically
requires an alternative mechanism to provide that packet-size information. Streaming
slave channels can therefore be divided into three categories:

• Slaves that do not require the interpretation of packet boundaries.

There are slave channels that do not have any concept of packet boundaries, or when
the size of packets do not affect the processing operation performed by the core.
Frequently, IP of this type provides a pass-through mechanism to allow TLAST to
propagate from input to output with equal latency to the data.

• Slaves that require the TLAST signal to identify packet boundaries.

These slaves channels are inherently packet-orientated, and can use TLAST as a packet
size indicator. For example, a Cyclic Redundancy Check (CRC) core can calculate the
CRC while data is being transferred, and upon detecting the TLAST signal, can verify
that the CRC is correct.

• Slaves that do not require TLAST to identify packet boundaries.

Some slave channels have an internal expectation of what size packets are required.
For example, an FFT input packet size is always the same as the transform size. In
these cases, TLAST would represent redundant information and also potentially
introduce ambiguity into packet sizing (for example: what should an N-point FFT do
when presented with an N-1 sample input packet.)

To prevent this ambiguity, many Xilinx IP cores are designed to ignore TLAST on slave
channels, and to use the explicit packet sizing information available to them. In these
situations the core uses the required number of AXI transfers it is expecting regardless
of TLAST. This typically greatly aides interoperability as the master and slave are not
required to agree on when TLAST must be asserted.

For example, consider an FIR followed by an N-point FFT. The FIR is a stream-based
core and cannot natively generate a stream with TLAST asserted every N transfers. If
the FFT is designed to ignore the incoming TLAST this is not an issue, and the system
functions as expected. However, if the FFT did require TLAST, an intermediate
“re-framing” core would be required to introduce the required signalling.

• For Packetized Data, TKEEP might be needed to signal packet remainders. When the
TDATA width is greater than the atomic size (minimum data granularity) of the
stream, a remainder is possible because there may not be enough data bytes to fill an
entire data beat. The only supported use of TKEEP for Xilinx endpoint IP is for packet
remainder signaling and deasserted TKEEP bits (which is called “Null Bytes” in the
AXI4-Stream Protocol v1.0) are only present in a data beat with TLAST asserted. For
non-packetized continuous streams or packetized streams where the data width is the
same size or smaller than the atomic size of data, there is no need for TKEEP. This
generally follows the “Continuous Aligned Stream” model described in the
AXI4-Stream protocol.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 51
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

The AXI4-Stream protocol describes the usage for TKEEP to encode trailing null bytes
to preserve packet lengths after size conversion, especially after upsizing an odd
length packet. This usage of TKEEP essentially encodes the remainder bytes after the
end of a packet which is an artifact of upsizing a packet beyond the atomic size of the
data.

Xilinx AXI master IP do not to generate any packets that have trailing transfers with all
TKEEP bits deasserted. This guideline maximizes compatibility and throughput since
Xilinx IP will not originate packets containing trailing transfers with all TKEEP bits
deasserted. Any deasserted TKEEP bits must be associated with TLAST = 1 in the
same data beat to signal the byte location of the last data byte in the packet.

Xilinx AXI slave IP are generally not designed to be tolerant of receiving packets that
have trailing transfers with all TKEEP bits deasserted. Slave IP that have TKEEP inputs
only sample TKEEP with TLAST is asserted to determine the packet remainder bytes.
In general if Xilinx IP are used in the system with other IP designed for “Continuous
Aligned Streams” as described in the AXI4-Stream specification, trailing transfers with
all TKEEP bits deasserted will not occur.

All streams entering into a system of Xilinx IP must be fully packed upon entry in the
system (no leading or intermediate null bytes) in which case arbitrary size conversion
will only introduce TKEEP for packet remainder encoding and will not result in data
beats where all TKEEP bits are deasserted.

Sideband Signals

The AXI4-Stream interface protocol allows passing sideband signals using the TUSER bus.

From an interoperability perspective, use of TUSER on an AXI4-Stream channel is an issue
as both master and Slave must now not only have the same interpretation of TDATA, but
also of TUSER.

Generally, Xilinx IP uses the TUSER field only to augment the TDATA field with
information that could prove useful, but ultimately can be ignored. Ignoring TUSER could
result in some loss of information, but the TDATA field still has some meaning.

For example, an FFT core implementation could use a TUSER output to indicate block
exponents to apply to the TDATA bus; if TUSER was ignored, the exponent scaling factor
would be lost, but TDATA would still contain un-scaled transform data.

Events

An event signal is a single wire interface used by a core to indicate that some specific
condition exists (for example: an input parameter is invalid, a buffer is empty or nearly
full, or the core is waiting on some additional information). Events are asserted while the
condition is present, and are deasserted once the condition passes, and exhibit no latching
behavior. Depending on the core and how it is used in a system, an asserted event might
indicate an error, a warning, or information. Event signals can be viewed as AXI4-Stream
channels with an VALID signal only, without any optional signals. Event signals can also
be considered out-of-band information and treated like generic flags, interrupts, or status
signals.

http://www.xilinx.com

52 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Events can be used in many different ways:

• Ignored:

Unless explicitly stated otherwise, a system can ignore all event conditions.
In general, a core continues to operate while an event is asserted, although potentially
in some degraded manner.

• As Interrupts or GPIOs:

An event signal might be connected to a processor using a suitable interrupt controller
or general purpose I/O controller. System software is then free to respond to events as
necessary.

• As Simulation Diagnostic:

Events can be useful during hardware simulation. They can indicate interoperability
issues between masters and slaves, or indicate misinterpretation of how subsystems
interact.

• As Hardware Diagnostic:

Similarly, events can be useful during hardware diagnostic. You can route events
signals to diagnostic LED or test points, or connect them to the ChipScope™ Pro
Analyzer.

As a system moves from development through integration to release, confidence in its
operation is gained; as confidence increases the need for events could diminish.

For example, during development simulations, events can be actively monitored to ensure
a system is operating as expected. During hardware integration, events might be
monitored only if unexpected behavior occurs, while in a fully-tested system, it might be
reasonable to ignore events.

Note: Events signals are asserted when the core detects the condition described by the event;
depending on internal core latency and buffering, this could be an indeterminate time after the inputs
that caused the event were presented to the core.

TLAST Events

Some slave channels do not require a TLAST signal to indicate packet boundaries. In such
cases, the core has a pair of events to indicate any discrepancy between the presented
TLAST and the internal concept of packet boundaries:

• Missing TLAST: TLAST is not asserted when expected by the core.

• Unexpected TLAST: TLAST is asserted when not expected by the core.

Depending on the system design these events might or might not indicate potential
problems.

For example, consider an FFT core used as a coprocessor to a CPU where data is streamed
to the core using a packet-orientated DMA engine.

The DMA engine can be configured to send a contiguous region of memory of a given
length to the FFT core, and to correctly assert TLAST at the end of the packet. The system
software can elect to use this coprocessor in a number of ways:

• Single transforms:

The simplest mode of operation is for the FFT core and the DMA engine to operate in
a lockstep manner. If the FFT core is configured to perform an N point transform, then
the DMA engine should be configured to provide packets of N complex samples.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 53
UG761 (v13.4) January 18, 2012

AXI4-Stream Adoption and Support

If a software or hardware bug is introduced that breaks this relationship, the FFT core
will detect TLAST mismatches and assert the appropriate event; in this case indicating
error conditions.

• Grouped transforms:

Typically, for each packet transferred by the DMA engine, a descriptor is required
containing start address, length, and flags; generating descriptors and sending them to
the engine requires effort from the host CPU. If the size of transform is short and the
number of transforms is high, the overhead of descriptor management might begin to
overcome the advantage of offloading processing to the FFT core.

One solution is for the CPU to group transforms into a single DMA operation. For
example, if the FFT core is configured for 32-point transforms, the CPU could group 64
individual transforms into a single DMA operation. The DMA engine generates a
single 2048 sample packet containing data for the 64 transforms; however, as the DMA
engine is only sending a single packet, only the data for the last transform has a
correctly placed TLAST. The FFT core would report 63 individual ‘missing TLAST’
events for the grouped operation. In this case the events are entirely expected and do
not indicate an error condition.

In the example case, the ‘unexpected TLAST’ event should not assert during normal
operation. At no point should a DMA transfer occur where TLAST does not align with
the end of an FFT transform. However, as for the described single transform example
case, a software or hardware error could result in this event being asserted. For
example, if the transform size is incorrectly changed in the middle of the grouped
packet, an error would occur.

• Streaming transforms:

For large transforms it might be difficult to arrange to hold the entire input packet in a
single contiguous region of memory.
In such cases it might be necessary to send data to the FFT core using multiple smaller
DMA transfers, each completing with a TLAST signal. Depending on how the CPU
manages DMA transfers, it is possible that the TLAST signal never aligns correctly
with the internal concept of packet boundaries within the FFT core.
The FFT core would therefore assert both ‘missing TLAST’ and ‘unexpected
TLAST’ events as appropriate while the data is transferring. In this example case, both
events are entirely expected, and do not indicate an error condition.

http://www.xilinx.com

54 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

DSP and Wireless IP: AXI Feature Adoption
An individual AXI4-Stream slave channel can be categorized as either a blocking or a
non-blocking channel.

A slave channel is blocking when some operation of the core is inhibited until a transaction
occurs on that channel.

For example, consider an FFT core that features two slave channels; a data channel and a
control channel. The data channel transfers input data, and the control channel transfers
control packets indicating how the input data should be processed (like transform size).

The control channel can be designed to be either blocking or non-blocking:

• A blocking case performs a transform only when both a control packet and a data
packet are presented to the core.

• A non-blocking case performs a transform with just a data packet, with the core
reusing previous control information.

There are numerous tradeoffs related to the use of blocking versus non-blocking interfaces:

Generally, the simplicity of using blocking channels outweighs the penalties.

Note: The distinction between blocking and non-blocking behavior is a characteristic of how a core
uses data and control presented to it; it does not necessarily have a direct influence on how a core
drives TREADY on its slave channels. For example, a core might feature internal buffers on slave
channels, in which case TREADY is asserted while the buffer has free space.

Note: In many cases, DSP and Wireless IP have base units that do not usually fall on the 8 bit (Byte)
boundaries. Refer to the Numerical Data in an AXI4-Stream, page 43 for information on how to
handle data that does not fall on byte boundaries.

Feature Blocking Non-blocking

Synchronization Automatic

Core operates on transactions; for
example, one control packet and one
input data packet produces one output
data packet.

Not automatic

System designer must ensure
that control information arrives
at the core before the data to
which it applies.

Signaling

Overhead

Small

Control information must be
transferred even if it does not change.

Minimized

Control information need be
transferred only if it changes.

Connectivity Simple

Data flows through a system of
blocking cores as and when required;
automatic synchronization ensures that
control and data remain in step.

Complex

System designer must manage
the flow of data and control flow
though a system of non-blocking
cores.

Resource Overhead Small

Cores typically require small additional
buffers and state machines to provide
blocking behavior.

None

Cores typically require no
additional resources to provide
non-blocking behavior.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 55
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

Video IP: AXI Feature Adoption
In the video domain, there are established signals that are used in many standards to
transmit data across video communication channels. These signals include video data and
synchronization for proper communication and flow control.

Typically, video signals are propagated using several processing cores and frame buffers
along which video resolution, frame rate, and formatting (such as interlaced to
de-interlaced) can change.

Processing cores can:

• Process a single stream (the Image Statistics core)

• Process and generate a single stream (most Image Processing Cores)

• Process multiple streams to generate a single stream (the OSD core)

• Process multiple streams to generate multiple streams (the MANR core)

Video data enters the system through the input I/O interface and exits the system through
a similar I/O interface, which is, in many cases, connected to a monitor for display of the
processed video sequence. In a complex video system, the IP cores provide a register
interface that is used for setup and control by a central managing microprocessor. This type
of system is supported by Xilinx design tools such as the Embedded Development Kit
(EDK) using the Xilinx MicroBlaze™ processor.

Xilinx Video IP cores are used in a variety of video and imaging applications and a wide
range of markets, from Industrial, Scientific, and Medical (ISM), security and surveillance,
automotive, customer electronics, to professional broadcast markets. The interface and
protocol addresses the needs of multiple application domains.

Video IP using the AXI4-Stream interface provides a simple, versatile, high-performance
point-to-point communication interface between video IP cores easy to use for video
designers.

Using the industry standard AXI interface lets video cores connect to embedded
processors and infrastructure IP. Based upon a well-defined, standard interface and
protocol, video and system designers can leverage advanced Xilinx software tools to
connect video IP and to build video systems.

The following subsections provide the requirements, standards, recommendations, and
guidelines for Xilinx Video IP design to adapt AXI4-Stream interfaces, and harmonize
AXI4-Stream based Video IP development with AXI4-Stream based DSP IP, infrastructure
IP, and software tools development. The subsections also provide the details for defining
AXI4-Stream based Video IP interfaces, and describes the signals and protocols for
transmitting video using the AXI4-Stream interface, its applicability to a wide range of
video systems, and usage guidelines for interoperability.

This subsection also defines the:

• Set of AXI4-Stream signals used for video data exchange between IP cores

• Protocol of transmitting video frames using the AXI4-Stream interface

• List of supported data, such as RGB, 420 YCC, and the mapping of data to the TDATA
bus (see Table 3-6, page 67)

http://www.xilinx.com

56 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Video systems follow the general pipelined processing chain, shown in Figure 3-9.

Video IP Using AXI4-Stream Interface
The AXI4-Stream only carries active video data, throttled by both the master and slave
interfaces.

Note: Blank periods, audio, and ancillary data packets are not transferred using video over
AXI4-Stream.

Signaling Interface

Table 3-3 lists the mandatory interface signal names and functions for the input (slave) side
connectors. The AXI4-Stream Signal Name column lists the mandatory, top-level IP port
names.

Figure 3-9: Typical Video Processing System

Table 3-3: Video Over AXI4-Stream Input (Slave) Interface Signals

Function Width Direction
AXI4-Stream
Signal Name

Video Specific
Name

Video Data 8, 16, 24, 32,
40, 48, 56, 64 IN s_axis_video_tdata DATA

Valid 1 IN s_axis_video_tvalid VALID

Ready 1 OUT s_axis_video_tready READY

Start Of Frame 1 IN s_axis_video_tuser SOF

End Of Line 1 IN s_axis_video_tlast EOL

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 57
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

For IP with multiple AXI4-Stream input interfaces, the s_ signal prefix must be appended
to the sk_ signal, where k is the index of the respective input AXI4-Stream, shown in
Figure 3-10.

Table 3-4 lists the mandatory interface signal names and functions for the output
(master) side signals.

Similarly, for IP with multiple AXI4-Stream output interfaces, the m_ signal prefix must be
appended to the mk_ signal, where k is the index of the respective output AXI4-Stream.

The Video Specific Name column recommends short, descriptive signal names referring to
AXI4-Stream ports, to be used in HDL code, timing diagrams, and testbenches.

Clocking and ACLK

Each Video IP using the AXI4-Stream interface must reference a clock source.
Directly-connected master and slave interfaces must be clocked by the same clock source.
Any clock available to the IP can be used as the referenced clock source for an AXI
interface.

The AXI protocol requires each component interface to use a single clock input signal,
ACLK. The ACLK signal is a mandatory pin on the IP core interface.

�������	

���
�������������

���
��������������

���
��������������

���
�����������
�

���
�������������

���
��������������

���
��������������

���
�����������
�

���
����������
��

����
�������������
����
��������������
����
��������������
����
�����������
�
����
����������
��

����
�������������
����
��������������
����
��������������
����
�����������
�
����
����������
��

�����
�������	����
������������

�����
�������	����
��������

��
�������	����
��������

��
�������	����
��������

���
����������
��

��������

������
����� ��
���
�� ��

�����

����� �

���
�� �

Figure 3-10: Video IP with Multiple AXI4-Stream Slave (Input)
and Master (Output) Interfaces

Table 3-4: Video Over AXI4-Stream Output (Master) Interface Signals

Function Width Direction
AXI4-Stream Signal

Name
Video Specific

Name

Video Data 8, 16, 24, 32,
40, 48, 56, 64 OUT m_axis_video_tdata DATA

Valid 1 OUT m_axis_video_tvalid VALID

Ready 1 IN m_axis_video_tready READY

Start Of Frame 1 OUT m_axis_video_tuser SOF

End Of Line 1 OUT m_axis_video_tlast EOL

http://www.xilinx.com

58 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

The name of the ACLK pin can be appended or prefixed to designate clock functionality,
such as m0_axis_aclk, or aclk_out for IP with multiple AXI4 interfaces using different
clocks.

Interface input signals are sampled on the rising edge of ACLK. Output signal changes
must occur after the rising edge of ACLK.

On Video IP interfaces, the ACLK pin is not part of the AXI4-Stream component interface;
ACLK signals associated with AXI4-Stream component interfaces are provided to Video IP
using one or multiple core clock signals. The clock signals can be shared by multiple
AXI4-Stream interfaces and signal processing circuitry within the IP.

Signals in each component interface must be synchronous to one of the core clock signals,
which are inputs to Video IP cores, but not directly part of the video over AXI4-Stream
interface. For example, if a core uses a single processing ACLK signal, to which all
operations within the core are synchronous, the master and slave AXI4-Stream video
interfaces should use this clock signal as their clock reference, as shown in Figure 3-11.

In the Figure 3-11 example, all AXI4-Stream interfaces operate synchronously to the ACLK
processing clock. If the core designer intends to receive video over AXI4-Stream from a
core operating in a different clock domain, and cross the clock domains within the IP, then
the core must receive both clocks on the IP interface.

A Video IP core can contain multiple AXI4-Stream interfaces and multiple clocks, shown in
Figure 3-12, page 59. Also, for system integration tools, the IP must contain metadata tags
identifying clock domain associations.

Figure 3-11: Single Clock Domain Processing Pipeline - IP with One Processing Clock

�������	�
��

�����������������
������������������
������������������
����������������

������������������
�������������������
�������������������
�����������������

����

�������	�
��

�����������������
������������������
������������������
����������������

������������������
�������������������
�������������������
�����������������

������
���

�������	�
��

�����������������
������������������
������������������
����������������
����������������

������������������
�������������������
�������������������
�����������������
�����������������

��������
����������
����������

��������
����������
����������

��������
����������
����������

���������������� ����������������� ���������������� �����������������

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 59
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

TDATA Structure

DATA bits are represented using the (N-1 downto 0) or [N-1:0] bit numbering convention.
The components of implicit subfields of DATA shall be packed together tight; for example,
a DW=10 bit RGB data packed together to 30 bits. If necessary, the packed data word can be
zero padded with Most Significant Bit (MSBs) so the width of the resulting word is an
integer multiple of 8.

Clock Enable, ACLKEN

The ACLKEN signal, associated with ACLK, is an optional, recommended pin on the IP
core interface. For IP with multiple AXI4-Stream interfaces using different clocks, the
name of the ACLKEN pin can be appended to designate clock association, such as
ACLKEN_m0, or ACLKEN_in.

Note: When ACLKEN (clock enable) pins are used (toggled) in conjunction with a common clock
source driving the master and slave sides of an AXI4-Stream interface, the ACLKEN pins associated
with the master and slave component interfaces must also be driven by the same signal to prevent
transaction errors.

Note: When two cores connect using AXI4-Stream interfaces, where only the master or the slave
interface has an ACLKEN port, which is not permanently tied high, the two interfaces must be
connected using the AXI4 FIFO core to avoid data corruption. See the LogiCORE IP FIFO Generator
(DS317) for information about the core. Appendix C, “Additional Resources,” provides a link to the
datasheet.

Reset Requirements, ARESETn

Video IP cores must have two reset source types:

• Reset pins provided in conjunction with the corresponding clocks (hardware reset)

• The software reset option provided by the processor interface

An Active-low reset pin, ARESETn, associated with ACLK, is required on the IP core
interface. For IP with multiple AXI4-Stream interfaces using different clocks, each clock
domain can have corresponding reset signals. The name of the ARESETn pin can be
appended to designate clock association, such as ARESETn_m0.

Figure 3-12: IP Connection using Clock Domain other than the Processing Clock

�������	�
�� �������	�
��

������
������
�������
�����
������

��������

����������
���
��
�����

������������������
�������������������

��������
�����������������
�������������������
�������������������

�����������������
������������������
������������������
����������������
����������������

����������������
������������������
������������������

�������������������

�����������������
�����������������

http://www.xilinx.com

60 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

The ARESETn signal takes precedence over ACLKEN, cores with optional ACLKEN inputs
that must reset when ARESETn is deasserted irrespective of the state of the associated
ACLKEN input.

Note: When a system with multiple-clocks and corresponding reset signals are being reset, the
reset generator has to ensure all reset signals are asserted/deasserted long enough that all
interfaces and clock-domains in all IP cores are correctly reinitialized.

TKEEP and TSTRB

TKEEP and TSROBE are not used in Video IP using AXI4-Stream interfaces. When
connecting to IP requiring TKEEP or TSTRB assignments, use the default values of
TKEEP=1 and TSTRB=1.

The AXI4-Stream definition permits the insertion of placeholder (position) bytes and null
bytes into the data stream; however, AXI4-Stream compliant Video IP should only use
the “Continuous Aligned Stream” mode of AXI4-Stream, and use packed data format
and TDATA padded to integer (N) multiples of 8 bits (see “Data Format” on page 65). For
most video formats, all data bytes are always valid, when DATA is qualified by VALID.

For 420 encoded YCbCr / YUV data, only every second video line contains valid Chroma
data. For the remaining lines, Luma is zero-padded.

TID

Video IP must use designated AXI4-Stream interfaces to transfer video and data streams;
therefore, TID is not used in Video IP using AXI4-Stream interface. Video IP is not
expected to forward a slave TID, or generate a TID, instead, the unconnected TID signal is
expected to default to 0.

TDEST

The TDEST signal is not used in Video IP using AXI4-Stream interface. Video IP is not
expected to forward a slave TDEST, or generate a TDEST, instead, the unconnected TDEST
signal is expected to default to 0.

TUSER

TUSER bit 0, labeled Start of Frame (see Start of Frame Signal - SOF, page 63) is the only
AXI4-Stream signal used for video. Other TUSER signal bits are not propagated by video
cores.

Signaling Protocol
This section describes how you can use the interface signals and basic protocols of the
AXI4-Stream specification to construct streaming interfaces to meet the needs of various
video system applications. Generic AXI protocol signals are referenced using signal names
reflecting their video specific function.

Channel Structure

The interface contains a set of handshake signals, VALID and READY, and a set of
information-carrying signals, DATA, EOL, and SOF, that are conditioned by the handshake
signals.

AXI4-Stream interface signals must operate in the same clock domain; however, the master
and slave side can operate in different clock domains. In this case, proper clock-domain
crossing logic must be employed when connecting the interfaces.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 61
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

Figure 3-13, page 61 is a simplified diagram showing the use of an asynchronous FIFO for
clock-domain crossing, omitting the enable and reset logic from the FIFO. A similar design
can be used to connect to third party IP with no ACLKEN, or to a master with no TREADY
input.

In EDK, the AXI4-Stream Interconnect IP can be used to simplify connecting AXI4-Stream
interfaces in different clock domains, shown in Figure 3-14.

Note: In this protocol specification, for the sake of simplicity, both master and slave AXI4-Stream
interfaces are assumed to operate in the same clock domain, synchronous to ACLK, with ACLKEN=1,
and ARESETn=1.

For any given channel, signals propagate from the source (master) to the destination
(slave) with the exception of the READY signal.

Any other information-carrying or control signals that need to propagate in the opposite
direction must be part of a separate interface, READY is not used as a mechanism to transfer
opposite direction information from a slave to a master.

READY/VALID Handshake

A valid transfer occurs when READY, VALID, ACLKEN, and ARESETn signals are high at
the rising edge of ACLK, as shown in Figure 3-15, page 62. During valid transfers, DATA
only carries active video data.

Figure 3-13: Use of Asynchronous FIFO for Clock-Domain Crossing- No FIFO Enable or Reset Logic

�������	�
��

������������������

�����������������
�����������������

����
������
������

��������

�����!� �������

�������	�
��

�����������������

����������������
����������������

����
������
������

�������������������
�������������������

!�
"���

�����
��

�����������������
�����������������

����!� ������

������������
������������

Figure 3-14: Connecting AXI4-Stream Video Interfaces in Different Clock Domains

http://www.xilinx.com

62 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Note: Blank periods, audio, and ancillary data packets are not transferred in Video IP using
AXI4-Stream.

Guidelines on Driving VALID

After VALID is asserted, no other signals in the same channel (except READY) can change
value until the transfer completes (the cycle after READY is asserted). After it is asserted,
VALID can only be de-asserted after a transfer has completed (READY is sampled high).
Transfers cannot be retracted or aborted. In any cycle following a transfer (handshake
completion), VALID can either be de-asserted or remain asserted to initiate a new transfer
Figure 3-15 shows an example of a READY/VALID handshake at the start of a new frame.
.

Guidelines on Driving READY

The READY signal can be asserted before, during or after the cycle in which VALID is
asserted. The assertion of READY might be dependent upon the value of VALID. The READY
slave output cannot be generated combinatorially from the VALID slave input. A slave that
can immediately accept data qualified by VALID must pre-assert its READY signal until
data is received. Alternatively, READY can be registered and driven in the cycle following
the VALID assertion. The default design convention is:

• A slave must drive READY independently, or

• Pre-assert READY to minimize latency

Interfacing to AXI4-Stream With No TREADY Signal

Although READY is a required signal for Video IP using AXI4-Stream, the AXI4-Stream
allows READY to be omitted.

In the case that the downstream IP is always ready to receive data, the AXI4-Stream slave
interface READY signal defaults its value to 1. However, the upstream IP AXI4-Stream
master interface not having a READY could limit interoperability with Video IP that
generate READY. It is possible to connect an AXI4-Stream master with only forward flow
control (VALID only) to an AXI4-Stream slave with full flow control, such as Video IP
(READY and VALID). This generally requires knowledge of the data rates and the use of an
AXI4-Stream FIFO block, as shown in Figure 3-13, page 61, to provide elasticity to handle
backpressure from READY de-assertion.

An example is a Video Input (master) connected to a Video Frame Buffer (slave) that writes
to memory. The video camera produces video data that comes in from a unidirectional link
such as a DVI cable. The data produced by the camera cannot be back-throttled which is
analogous to having VALID handshake only. The Frame Buffer might have to arbitrate

Figure 3-15: Example of Ready/Valid Handshake at Start of New Frame

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 63
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

with other devices, such as a processor, for access to memory. This could require the
memory controller to temporarily become unavailable by de-asserting TREADY while it
waits for access to memory.

After the controller grants access to the Frame Buffer write interface, it asserts READY and
takes data. In this example, having an AXI FIFO between the Video Input IP and the Frame
Buffer IP would allow the two to connect to each other. If the FIFO depth is selected
correctly by analyzing the memory arbitration process, no data would be lost due to a FIFO
overflow.

Start of Frame Signal - SOF

The Start-Of-Frame (SOF) signal, physically transmitted over the AXI4-Stream TUSER0
signal, marks the first pixel of a video frame. The SOF pulse is 1 valid transaction wide,
and must coincide with the first pixel of the frame Figure 3-15, page 62. SOF (TUSER0) is
defined on a data beat, and is associated technically with the least significant byte of the
beat, if between AXI4-Stream infrastructure codes TDATA and TUSER are byte packed, or
go through width conversions.

SOF:

• Serves as a frame synchronization signal, which allows downstream cores to
re-initialize, and detect the first pixel of a frame.

• Can be asserted an arbitrary number of ACLK cycles before the first pixel value is
presented on DATA, as long as a VALID is not asserted.

Parameterization and/or configuration registers define the dimensions of the video
frames that video IP can process. Starting from a known state, based on these configuration
settings the IP can predict when the beginning of the next frame is expected.

The SOF that is detected before expected (early), or the SOF that is not present when it is
expected (late), signals error conditions indicative of either upstream communication
errors or incorrect core configuration. It is recommended that Video IP flag both error
conditions with dedicated flags in the core ERROR register.

Recommended flag names are sk_SOF_EARLY and sk_SOF_LATE, where k is the index of
the AXI4-Stream slave interface. Also, it is recommended that these flags can trigger
interrupts, so embedded application developers can quickly identify faulty interfaces or
incorrectly parameterized cores in a video system.

Also, to minimize the impact of sustained error conditions it is also recommended, but not
mandated, that:

• When the SOF_EARLY condition is detected, if possible, the IP immediately start
processing the new frame. All pixels pertaining to the previous frame should be
processed, the last sample of the previous frame should be qualified with the EOL
signal, and processing of the new frame should commence.

• When the SOF_LATE condition is detected, the IP should drop (accept on the input,
but not propagate to the output) subsequent pixels until the SOF signal arrives.

End Of Line Signal - EOL

The End-Of-Line (EOL) signal, physically transmitted over the AXI4-Stream TLAST signal,
marks the last pixel of a line. The EOL pulse is 1 valid transaction wide, and must coincide
with the last pixel of a scan-line, shown in Figure 3-16, page 64.

http://www.xilinx.com

64 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

Parameterization and/or configuration registers define the dimensions of video frames
video IP should process. Starting from a known state, based on these configuration settings
the IP can predict when the last pixel of each scanline is expected. The EOL detected before
expected (early), or EOL not present when expected (late), signals error conditions
indicative of either upstream communication errors or incorrect core configuration.

It is recommended that video IP flags both error conditions with dedicated flags in the core
ERROR register.

Recommended flag names are sk_EOL_EARLY and sk_EOL_LATE, where k is the index of
the AXI4-Stream slave interface.

It is recommended that these flags can trigger interrupts, so embedded application
developers can quickly identify faulty interfaces or incorrectly parameterized cores in a
video system.

Also, to minimize the impact of sustained error conditions it is recommended, but not
mandated, that:

• When the EOL_EARLY condition is detected, if possible, the IP should immediately
start processing the new line. All pixels pertaining to the previous frame should be
flushed out, the line should be qualified with the EOL signal, and processing of the
new line should commence.

• When the EOL_LATE condition is detected, the IP should generate its output EOL
signal according to the programmed/parameterized line-length, and drop (accept on
the input, but not propagate to the output) subsequent pixels until the EOL signal
arrives.

Real Time Requirements

The AXI4-Stream interface protocol does not impose any rules on real-time requirements.
Video IP should not impose real-time requirements on data transfers, other than to meet
and not to break, the fundamental AXI handshake rules at the AXI4-Stream interface. The
IP must meet the constraint on the clock signal to which the interface is synchronous.

Figure 3-16: Use of EOL and SOF Signals

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 65
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

Data Format

To transport video data, the DATA vector encodes logical channel subsets of physical DATA
signals. Various AXI4-Stream interfaces between the modules can facilitate transferring
video using different precision (for example; 8, 10, 12, or 16 bits per color channel), and/or
different formats (for example RGB or YUV 420). A specific example of a typical image
pre-processing system is illustrated in Figure 3-17, which consists of a number of Xilinx IP
cores connected using AXI4-Stream to implement an imaging sensor processing pipeline.

AXI4-Stream channels in Figure 3-17 are annotated to reflect the transferred video format.
The DATA signal must not have any explicit subfields defined, either as separate ports or
with special signal suffixes.

For example, cores with DATA_Y and DATA_C signals are not permitted. Format
information is embedded in the IP-XACT representation of IP, as metadata tags attached to
AXI4-Stream ports.

AXI4-Stream Specific Parameterization

Table 3-5 lists the parameters specific to Video IP using the AXI4-Stream interface. The
paragraphs immediately following the table provide further description.

Figure 3-17: Image Processing Pipeline

#�$���

%����

���$��
%�������
&%���'

��� ��(� �%�)	�

�*

��

������
�����������
(�����

+*��
���

,���-

�������������
������

�������������

�.�/0%
������

�����"���

%�����*���

#�������

1�2����3���

3����
+��������

*����
����������

�+%

�2����
+�������

1�$�
1�2��������

,��
///

)	�
������

��(
������

*����
������

1�2�����
������

(�������4�

%���
������

����
������

3����
������

�1
%����
1������
�������

)�"�������
	�����

����������

,
///

,
///

+*�
///

+*�
///

+*�
///

,��
///

,��
///

���
������

�.�/0%
���

�+%�
������

�%�
������

�.�/0�#���

�.�/0�%�����

��������
�����������
&%�"�!���'

�.�/0#���

,��
/55

�6�

*��-���
�������

�*

��

)	�
������

��(
������

*����
������

1�2�����
������

(�������4�

%���
������

����
������

3����
������

�1

���
������

�+%�
������

�%�
������

�6�

*��-��
�������

Table 3-5: Video IP using AXI4-Stream Parameters

Parameter Name Parameter Function

C_t_AXIS_DATA_WIDTH Width of color/component data.

C_t_VIDEO_FORMAT Video format code (see following
description).

C_t_AXIS_TDATA_WIDTH Width of the DATA interface signal.

http://www.xilinx.com

66 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

The C_t_AXIS_TDATA_WIDTH parameter determines the width of the variable-width
DATA interface signal on AXI4-Stream interface t, where interface type t can have the
values [m,s] designating a master or slave interface

Typically C_t_AXIS_TDATA_WIDTH is a function of the component data width and the
number of components the actual video format is using.

The recommended parameter names for component data width is C_t_DATA_WIDTH.
Supported component widths are 8, 10, 12, and 16 bits.

The optional format parameter C_t_VIDEO_FORMAT can assist the IP in determining the
number of color or components present on DATA using a HDL function. Video IP is
typically very specific on the formats expected on the input interfaces, and could already
have the number of color or component channels hard coded in the IP. However, when the
C_t_VIDEO_FORMAT parameter, set by a default value on the master interface, is
propagated in HDL designs to slave interfaces, the IP source code can perform DRC by
means of assertions to ensure that AXI4-Stream video interfaces are driven by video
encoded in the expected format.

Encoding

Table 3-6, page 67 lists the detailed representation of video data formats, with DW =
C_DATA_WIDTH and VF = C_VIDEO_FORMAT. Video data format codes follow the
examples of from the following industry standards:

• International Telecommunications Union (ITU): ITU-R BT.1614:
http://engineers.ihs.com/document/abstract/SUCFEBAAAAAAAAAA,

• HDTV Standards and Practices for Digital Broadcasting: SMTPE 352M-2009 (available on
the web in video).

http://www.xilinx.com
http://engineers.ihs.com/document/abstract/SUCFEBAAAAAAAAAA

AXI Reference Guide www.xilinx.com 67
UG761 (v13.4) January 18, 2012

Video IP: AXI Feature Adoption

Table 3-6: Data Format Representations

VF code Video Format [4DW-1: 3DW] [3DW-1: 2DW] [2DW-1: DW] [DW-1:0]

0 YUV 4:2:2 V/U, Cr/Cb Y

1 YUV 4:4:4 V, Cr U, Cb Y

2 RGB R B G

3 YUV 4:2:0 V/U, Cr/Cb Y

4 YUVA 4:2:2 α V/U, Cr/Cb Y

5 YUVA 4:4:4 α V, Cr U, Cb Y

6 RGBA α R B G

7* YUVA 4:2:0 α V/U, Cr/Cb Y

8 YUVD 4:2:2 D V/U, Cr/Cb Y

9 YUVD 4:4:4 D V, Cr U, Cb Y

10 RGBD D R B G

11* YUV 4:2:0 D V/U, Cr/Cb Y

12* Bayer Sensor RGB, CMY

13* Luma Only Y

14* Reserved User Defined ? No DRC

15* Reserved User Defined ? No DRC

* Reserved values in SMTPE 352M-2009 Specification Standard

http://www.xilinx.com

68 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 3: AXI Feature Adoption in Xilinx FPGAs

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 69
UG761 (v13.4) January 18, 2012

Chapter 4

Migrating to Xilinx AXI Protocols

Introduction
Migrating an existing core is a process of mapping your core's existing I/O signals to
corresponding AXI protocol signals. In some cases, additional logic might be needed.

The MicroBlaze™ embedded processor changed its endianan-ness to go from having a Big-
endian orientation, (which aligned with the PLB interfaces of the PowerPC® embedded
processors), to Little-endian (which aligns with ARM® processor requirements and the
AXI protocol). Migration considerations for software are covered in “Using CORE
Generator to Upgrade IP,” page 80.

Migrating to AXI for IP Cores
Xilinx provides the following guidance for migrating IP.

Embedded PLBv4.6 IP: There are three embedded IP migration scenarios that need to be
considered. Those are IP that:

− Were created from scratch.

− Were created using the Create and Import IP Wizard in a previous version of
Xilinx tools.

− Cannot be altered, and needs to be used as-is with its existing PLBv4.6 interface.

IP created from scratch is not discussed in this section, except for using the AXI IP
templates provided in the answer record cited below; refer to “Memory Mapped IP
Feature Adoption and Support,” page 41 as well as the ARM AMBA AXI Protocol v2.0
Specification specification available from the ARM website. New IP should be designed to
the AXI protocol.

IP that was created using the Create and Import Peripheral (CIP) Wizard in a previous
version of Xilinx tools (before AXI was supported) can be migrated by rerunning the CIP
Wizard to create AXI-based template designs. Alternatively, the IP can be migrated using
AXI IP templates provided in the solution record:
http://www.xilinx.com/support/answers/37425.htm.

These templates provide example RTL level designs for AXI4, AXI4-Lite, and AXI4-Stream
masters and slaves. Check this answer record periodically for updates or new templates.

IP that needs to remain unchanged can be used in the Xilinx tools using the AXI to PLB
bridge. See the following section, “The AXI To PLBv.46 Bridge,” page 70 for more
information.

Larger pieces of Xilinx IP (often called Connectivity or Foundation IP): This class of IP has
migration instructions in the respective documentation. This class of IP includes: PCIe,
Ethernet, Memory Core, and Serial Rapid I/O.

http://www.xilinx.com/support/answers/37425.htm
http://www.xilinx.com

70 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

Local-Link Interface: Local-Link is a generic streaming, FIFO-like interface that has been
in service at Xilinx for a number of software generations. See “Migrating Local-Link to
AXI4-Stream,” page 72 for more information.

DSP IP: General guidelines on converting this broad class of IP is covered in “Migrating
HDL Designs to use DSP IP with AXI4-Stream,” page 79.

The AXI To PLBv.46 Bridge
For Xilinx embedded processor customers who have developed their own PLBv4.6-based
IP, the AXI to PLBv.4.6 Bridge provides a mechanism to incorporate existing IP in AXI-
based systems. The AXI4 to Processor Local Bus (PLBv4.6) Bridge translates AXI4
transactions into PLBv4.6 transactions. It functions as 32- or 64-bit slave on AXI4 and a 32-
or 64-bit master on the PLBv4.6.

Features
The Xilinx AXI (AXI4 and AXI4-Lite) to PLBv4.6 Bridge is a soft IP core with the following
supported features:

• AXI4, AXI4-Lite, and PLB v.46 (with Xilinx simplification)

• 1:1 (AXI:PLB) synchronous clock ratio

• 32-bit address on AXI and PLB interfaces

• 32- or 64-bit data buses on AXI and PLB interfaces (1:1 ratio)

• Write and read data buffering

AXI4 Slave Interface
The following are the supported AXI4 Slave Interface (SI) features:

• Configurable AXI4 interface categories

• Control (AXI4-Lite) interface

• Read/write interface

• Read-only interface

• Write-only interface

• Additional control interface to access internal registers of the design

• INCR bursts of 1 to 256

• Bursts of 1-16 for FIXED-type transfers

• Bursts of 2, 4, 8 and 16 for WRAP-type transfers

• Configurable support for narrow transfers

• Unaligned transactions

• Early response for bufferable write transfer

• Debug register for error/timeout condition for bufferable write transfer

• Configurable (maximum of two) number of pipelined read/write addresses

• Interrupt generation for write null data strobes

• Interrupt generation for partial data strobes except first and last data beat

• Supports simultaneous read and write operations

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 71
UG761 (v13.4) January 18, 2012

The AXI To PLBv.46 Bridge

PLBv4.6 Master Interface
The following are the supported PLBv4.6 Master Interface (MI) features:

• Configurable (maximum of two) number of pipelined read/write address

• Xilinx-simplified PLBv4.6 protocol

• Single transfers of 1 to 4 through 8 bytes

• Fixed length of 2 to 16 data beats

• Cacheline transactions of line size 4 and 8

• Address pipelining for one read and one write

• Supports simultaneous read and write operations

• Supports 32-, 64-, and 128-bit PLBv4.6 data bus widths with required data mirroring

AXI to PLBv4.6 Bridge Functional Description
Figure 4-1 shows a block diagram of the AXI PLBv4.6 bridge.

• The PORT-2 is valid when C_EN_DEBUG_REG=1, C_S_AXI_PROTOCOL=”AXI4”, and
C_S_AXI_SUPPORTS_WRITE=1 only.

• The AXI data bus width is 32- and 64-bit and the PLBv4.6 master is a 32- and 64-bit
device (for example, C_MPLB_NATIVE_DWIDTH= 32/64).
PLBv4.6 data bus widths of 32-bit, 64-bit, and 128-bit are supported with the AXI to
PLBv4.6 Bridge performing the required data mirroring.

• AXI transactions are received on the AXI Slave Interface (SI), then translated to
PLBv4.6 transactions on the PLBv4.6 bus master interface.

• Both read data and write data are buffered (when C_S_AXI_PROTOCOL=”AXI4”) in
the bridge, because of the mismatch of AXI and PLBv4.6 protocols where AXI
protocol allows the master to throttle data flow, but PLBv4.6 protocol does not allow
PLB masters to throttle data flow.

The bridge:

• Buffers the write data input from the AXI port before initiating the PLBv4.6 write
transaction.

Figure 4-1: AXI to PLBv4.6 Block Diagram

PORT 1

PORT 2

AXI4

Registers

P
LB

 v
46

AXI PLBv46 Bridge

AXI4 Lite

Invalid if
(C_BRIDGE_AXI_PROTOCOL=”axi4lite”)

OR (C_S0_AXI_SUPPORTS_WRITE=0) OR
(C_S0_AXI_DEBUG_REGISTER_EN=0)

Valid only when
(C_BRIDGE_AXI_PROTOCOL=”axi4”)

Valid only when
(C_BRIDGE_AXI_PROTOCOL=”axi4lite”)

AXI4-PLBv46
Bridge

Bridge Logic

AXILite-
PLBv46
Bridge

X12064

http://www.xilinx.com

72 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

• Implements a read and write data buffer of depth 32x32/64x32 to hold the data for
two PLB transfers of highest (16) burst length.

• Supports simultaneous read and write operations from AXI to PLB.

Migrating Local-Link to AXI4-Stream
Local-Link is an active-Low signaling standard, which is used commonly for Xilinx IP
cores. Many of these signals have a corollary within AXI4-Stream, which eases the
conversion to AXI4-Stream protocol.

Required Local-Link Signal to AXI4-Stream Signal Mapping
The Local-Link has a set of required signals as well as a set of optional signals. Table 4-1
shows the list of required signals the mapping to the AXI4-Stream protocol signals.

• You can map clock and reset signals directly to the appropriate clock and reset for the
given interface. The ARESETN signal is not always present in IP cores, but you can
instead use another system reset signal.

• In AXI4-Stream, the TDATA signal is optional. Because DATA is required for a Local-
Link, it is assumed that an interface converted to AXI4-Stream from Local-Link must
create the TDATA signal.

• The Source and Destination Ready are active-Low signals. You can translate these
signals to TVALID and TREADY by inverting them to an active-High signal.

Note: The TREADY signal is optional. It is assumed that when you convert an interface, you
chose to use this signal.

• The EOF_N is an active-Low signal used to indicate the end of a frame. With an
inversion, this will connect directly to TLAST, which is an optional signal.

Table 4-1: Required Local-Link Signals

Signal Name Direction Description Mapping to
AXI4-Stream
Signals

CLK Input Clock: all signals are synchronous to
this clock

ACLK

RST_N Input Reset: When reset is asserted,
control signals deassert

ARESETN
(or some other
reset)

DATA src to dst Data Bus: Frame data is transmitted
across this bus

TDATA

SRC_RDY_N src to dst Source Ready: Indicates that the
source is ready to send data

TVAILD

DST_RDY_N dst to src Destination Ready: Indicates that the
sink is ready to accept data

TREADY

SOF_N src to dst Start-of-Frame: Indicates the first
beat of a frame

Optional TUSER

EOF_N src to dst End-of-Frame: Indicates the last beat
of a frame

TLAST

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 73
UG761 (v13.4) January 18, 2012

Migrating Local-Link to AXI4-Stream

• The SOF_N signal does not have a direct map to AXI4-Stream. The start of frame is
implied, because it is always the first valid beat after the observation of TLAST (or
reset).
In most cases the signal is no longer needed for the interface. If a start of frame signal
is needed, it could be applied to the TUSER field.

Figure 4-2 shows a typical single Local-Link waveform.

The preceding figure shows how the flow control signals (SRC_RDY_N and DST_RDY_N)
restrict data flow. Also, observe how SOF_N and EOF_N signals frame the data packet.

Figure 4-3 shows the same type of transaction with AXI4-Stream. Note the only major
difference is the absence of an SOF signal, which is now implied.

Optional Local-Link Signal to AXI4-Stream Signal Mapping

Table 4-2 shows a list of the more common optional signals within Local-Link.

Figure 4-2: Single Local-Link Waveform

CLK

SOF_N

EOF_N

SRC_RDY_N

DST_RDY_N

DATA[63:0]

X12043

P0 P2 P3 P4 P5P1

Figure 4-3: AXI4-Stream Waveform

ACLK

TLAST

TVALID

TREADY

TDATA P0 P1 P2 P3 P4 P5
X12042

Table 4-2: Optional Local-Link Signals Mapped to AXI4-Stream Signals

Signal Name Direction Description Mapping to AXI
SOP_N src to dst Start-of-Packet: Packetization

within a frame.
TUSER

EOP_N src to dst End-of-Packet: Packetization
within a frame.

TUSER

REM src to dst Remainder Bus: Delineator
between valid and invalid
data.

TKEEP

http://www.xilinx.com

74 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

• Any optional signal that is not represented in this table must be sent using the TUSER
signal.

• The SOP_N and EOP_N signals are rarely used in Local-Link. They add granularity to
the SOF/EOF signals. If there is a need for them, they must be created in the TUSER
field.

• The REM signal specifies the remainder of a packet. AXI4-Stream has TKEEP bus that
may have deasserted bits when TLAST = 1 to signal the location of the last byte in the
packet.

• Source discontinue, SRC_DSC_N, is a mechanism to end a transaction early by the
source. This can be done through the TUSER field. The source device must apply the
TLAST signal also.

• There is no native mechanism within the AXI4-Stream protocol for a destination
discontinue. TUSER cannot be used because it always comes from the source device.
You can use a dedicated sideband signal that is not covered by AXI4-Stream. Such a
signal would not be considered within the bounds of the AXI4-Stream.

• The CH indicator can be mapped to the thread ID (TID). For parity, or any error
checking, the TUSER is a suitable resource.

Variations in Local-Link IP

There are some variations of Local-Link to be aware of:

• Some variations use active-High signaling. Because AXI4-Stream uses active-High
signaling (except on ARESETN), the resulting polarity should still be the same.

• Some users create their own signals for Local-Link. These signals are not defined in
the Local-Link specification.

− In cases where the signal goes from the source to the destination, a suitable
location is TUSER.

− If the signals go from the destination to the source, they cannot use TUSER or any
other AXI4-Stream signal. Instead, one of the preferable methods is to create a
second return AXI4-Stream interface. In this case, most of the optional AXI4-
Stream signals would not be used; only the TVALID and TUSER signals.

SRC_DSC_N src to dst Source Discontinue: Indicates
the source device is
cancelling a frame.

TUSER

DST_DSC_N dst to src Destination Discontinue:
Indicates the destination
device is cancelling a frame.

<none>

CH src to dst Channel Bus Number: Used
to specify a channel or
destination ID.

TID

PARITY src to dst Parity: Contains the parity that
is calculation over the entire
data bus.

TUSER

Table 4-2: Optional Local-Link Signals Mapped to AXI4-Stream Signals (Cont’d)

Signal Name Direction Description Mapping to AXI

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 75
UG761 (v13.4) January 18, 2012

Using System Generator for Migrating IP

Local-Link References

The Local-Link documentation is on the following website:

http://www.xilinx.com/products/design_resources/conn_central/locallink_member/sp06.pdf.

Using System Generator for Migrating IP
You can migrate both DSP and PLBv4.6 IP using the System Generator software.

Migrating a System Generator for DSP IP to AXI
When migrating a System Generator for DSP design to use AXI IP, there are some general
items to consider. This subsection elaborates on those key items, and is intended to be an
overview of the process; IP-specific migration details are available in each respective data
sheet.

Resets

In System Generator, the resets on non-AXI IP are active-High. AXI IP in general, and in
System Generator, has an active-Low reset, aresetn. System Generator “Inverter” blocks
are necessary when using a single reset signal to reset both AXI and non-AXI IP.

A minimum aresetn active-Low pulse of two cycles is required, because the signal is
internally registered for performance. Additionally, aresetn always takes priority over
aclken.

Clock Enables

In System Generator, the clock enables on both non-AXI and AXI IP are active-High. AXI
IP in System Generator use an active-High clock-enable, aclken.

TDATA

In AXI protocols, data is consolidated onto a single TDATA input stream. This is consistent
with the top-level ports on DSP IP in CORE Generator. For ease of connecting data ports,
System Generator breaks TDATA down into individual ports in the block view.

http://www.xilinx.com/products/design_resources/conn_central/locallink_member/sp06.pdf
http://www.xilinx.com

76 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

An example of this is the AXI Complex Multiplier block as shown in Figure 4-4:

Port Ordering

When comparing non-AXI and AXI IP, such as the Complex Multiplier 3.1 and 4.0,
respectively, the real and imaginary ports appear in opposite order when looking at the
block from top to bottom. You must be careful to not connect the AXI block with the data
paths accidentally crossed. Figure 4-5 shows an example of the port signals.

Figure 4-4: AXI Complex Multiplier Block

Figure 4-5: Port Signal Example

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 77
UG761 (v13.4) January 18, 2012

Migrating a Fast Simplex Link to AXI4-Stream

Latency

With AXI IP in System Generator, the latency is handled in a different fashion than non-
AXI IP. In non-AXI IP, you can specify latency directly using either a GUI option or by
specifying -1 in the maximum performance option. With AXI IP, the latency is either
Automatic or Manual:

• Automatic replaces the -1 in the maximum performance option.

• To manually set the latency, the parameter is called Minimum Latency for AXI blocks
because:

− In blocking mode, the latency can be higher than the minimum latency specified if
the system has back pressure.

− In a non-blocking AXI configuration, the latency is deterministic.

With DSP IP that support the AXI4-Stream interface, each individual AXI4-Stream slave
channel can be categorized as either a blocking or a non-blocking channel. A slave channel
is blocking when some operation of the core is inhibited until a transaction occurs on that
channel. In general, the latency of the DSP IP AXI4-Stream interface is static for non-
blocking and variable for blocking mode. To reduce errors while migrating your design,
pay attention to the “Latency Changes” and “Instructions for Minimum Change
Migration” sections of the IP data sheet.

Output Width Specification

Specification for the output word width is different for non-AXI and AXI IP in System
Generator. In some non-AXI IP, you must specify both the Output Most Significant Bit
(MSB) and Output Least Significant Bit (LSB). With AXI IP, you need to specify only the
Output Width (total width); the binary point location is determined automatically. Output
rounding behavior is consistent with non-AXI and AXI versions of the IP.

Migrating PLBv4.6 Interfaces in System Generator
System Generator provides a straight-forward migration path for designs that already
contain PLBv4.6 interfaces. Select the AXI4 interface in the EDK Processor block before
generating a processor core, as shown in Figure 2-1, page 11.

When you use the processor import mode, the Bus Type field is grayed out because System
Generator auto-detects the bus used by the imported MicroBlaze™ processor and uses the
appropriate interface. In this case, you must create a new XPS project with a MicroBlaze
processor that has an AXI4 interface before importing into System Generator.

Migrating a Fast Simplex Link to AXI4-Stream
When converting a Fast Simplex Link (FSL) peripheral to an AXI4-Stream peripheral there
are several considerations. You must migrate the:

• Slave FSL port to an AXI4-Stream slave interface

• Master FSL port to an AXI4-Stream master interface

The following tables list the master-FSL and slave-FSL to AXI4-Stream signals conversion
mappings.

http://www.xilinx.com

78 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

Master FSL to AXI4-Stream Signal Mapping
Table 4-3, page 78 shows the AXI4-Stream Signal Mapping.

Slave FSL to AXI4-Stream Signal Mapping
Table 4-4 shows the FSO to AXI4-Stream Signal Mapping.

Differences in Throttling
There are fundamental differences in throttling between FSL and AXI4-Stream, as follows:

• The AXI_M_TVALID signal cannot be deasserted after being asserted unless a transfer
is completed with AXI_TREADY. However, a AXI_TREADY can be asserted and
deasserted whenever the AXI4-Stream slave requires assertion and deassertion.

• For FSL, the signals FSL_Full and FSL_Exists are the status of the interface; for
example, if the slave is full or if the master has valid data

• An FSL-master can have a pre-determined expectation prior to writing to FSL to check
if the FSL-Slave can accept the transfer based on the FSL slave having a current state
of FSL_Full

• An AXI4-Stream master cannot use the status of AXI_S_TREADY unless a transfer is
started.

The MicroBlaze processor has an FSL test instruction that checks the current status of the
FSL interface. For this instruction to function on the AXI4-Stream, MicroBlaze has an
additional 32-bit Data Flip-Flop (DFF) for each AXI4-Stream master interface to act as an
output holding register.

When MicroBlaze executes a put fsl instruction, it writes to this DFF. The AXI4-Stream
logic inside MicroBlaze moves the value out from the DFF to the external AXI4-Stream
slave device as soon as the AXI4-Stream allows. Instead of checking the AXI4-Stream

Table 4-3: AXI4-Stream Signal Mapping

Signal Direction AXI Signal Direction

FSL_M_Clk Out M_AXIS_<Port_Name>ACLK In

FSL_M_Write Out M_AXIS_<Port_Name>TVALID Out

FSL_M_Full In M_AXIS_<Port_Name>TREADY In

FSL_M_Data Out M_AXIS_<Port_Name>TDATA Out

FSL_M_Control Out M_AXIS_<Port_Name>TLAST Out

Table 4-4: FSO to AXI-4 Stream Signal Mapping

Signal Direction AXI Signal Direction

FSL_S_Clk Out S_AXIS_<Port_Name>ACLK In

FSL_S_Exists In S_AXIS_<Port_Name>TVALID In

FSL_S_Read Out S_AXIS_<Port_Name>TREADY Out

FSL_S_Data In S_AXIS_<Port_Name>TDATA In

FSL_S_Control In S_AXIS_<Port_Name>TLAST In

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 79
UG761 (v13.4) January 18, 2012

Migrating HDL Designs to use DSP IP with AXI4-Stream

TREADY/TVALID signals, the fsl test instruction checks if the DFF contains valid data
instead because the AXI_S_TREADY signal cannot be directly used for this purpose.

The additional 32-bit DFFs ensure that all current FSL instructions to work seamlessly on
AXI4-Stream. There is no change needed in the software when converting from FSL to
AXI4 stream.

For backward compatibility, the MicroBlaze processor supports keeping the FSL interfaces
while the normal memory mapped AXI interfaces are configured for AXI4.

This is accomplished by having a separate, independent MicroBlaze configuration
parameter (C_STREAM_INTERCONNECT) to determine if the stream interface should be
AXI4-Stream or FSL.

Migrating HDL Designs to use DSP IP with AXI4-Stream
Adopting an AXI4-stream interface on a DSP IP should not change the functional, or signal
processing behavior of the DSP function such as a filter or a FFT transform. However, the
sequence in which data is presented to a DSP IP could significantly change the functional
output from that DSP IP. For example, one sample shift in a time division multiplexed
input data stream will provide incorrect results for all output time division multiplexed
data.

To facilitate the migration of an HDL design to use DSP IP with an AXI4-Stream interface,
the following subsections provide the general items to consider:

• DSP IP-Specific Migration Instructions

• Demonstration Testbench

• Using CORE Generator to Upgrade IP

• Latency Changes

• Mapping Previously Assigned Ports to An AXI4-Stream Interface

DSP IP-Specific Migration Instructions
This section provides an overview with IP specific migration details available in each
respective data sheet. Before starting the migration of a specific piece of IP, review the
“AXI4-Stream Considerations” and “Migrating from earlier versions” in the individual IP
data sheets. Figure 4-6 shows an example.

Figure 4-6: Example IP Data Sheet

http://www.xilinx.com

80 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

Demonstration Testbench
To assist with core migration, CORE Generator generates an example testbench in the
demo_tb directory under the CORE Generator project directory. The testbench instantiates
the generated core and demonstrates a simple example of how the DSP IP works with the
AXI4-stream interface. This is a simple VHDL testbench that exercises the core.

The demonstration testbench source code is one VHDL file,
demo_tb/tb_<component_name>.vhd, in the CORE Generator output directory.

The source code is comprehensively commented. The demonstration testbench drives the
input signals of the core to demonstrate the features and modes of operation of the core
with the AXI4-Stream interface. For more information on how to use the generated
testbench refer to the “Demonstration Testbench” section in the individual IP data sheet.

Figure 4-7 shows the demo_tb directory structure.

Using CORE Generator to Upgrade IP
When it is available, you can use the CORE Generator core upgrade functionality to
upgrade an existing XCO file from previous versions of the core to the latest version. DSP
IP cores such as FIR Compiler v6.0, Fast Fourier Transform v8.0, DDS Compiler v5.0, and
Complex Multipler v4.0 provide the capability to upgrade XCO parameters from previous
versions of the core. Figure 4-8 shows the upgrade function in CORE Generator.

Note: The upgrade mechanism alone will not create a core compatible with the latest version but will
provide a core that has equivalent parameter selection as the previous version of the core. The core
instantiation in the design must be updated to use the AXI4-Stream interface. The upgrade
mechanism also creates a backup of the old XCO file. The generated output is contained in the /tmp
folder of the CORE Generator project.

Figure 4-7: demo_tb Directory Structure

Figure 4-8: CORE Generator Upgrade Function

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 81
UG761 (v13.4) January 18, 2012

Migrating HDL Designs to use DSP IP with AXI4-Stream

Latency Changes
With DSP IP that support the AXI4-Stream interface, each individual AXI4-Stream slave
channel can be categorized as either a blocking or a non-blocking channel. A slave channel is
blocking when some operation of the core is inhibited until a transaction occurs on that
channel. In general, the latency of the DSP IP AXI4-Stream interface is static for non-
blocking and variable for blocking mode. To reduce errors while migrating your design,
pay attention to the “Latency Changes” and “Instructions for Minimum Change
Migration” sections of the IP data sheet.

Mapping Previously Assigned Ports to An AXI4-Stream Interface
The individual DSP IP datasheet provides a table about the changes to port naming,
additional or deprecated ports, and polarity changes from previous version to the latest
version of the core. Noteworthy changes are:

• Resets: The DSP IP AXI4-stream interface aresetn reset signal is active-Low and
must be asserted for a minimum length of two clock cycles. The aresetn reset signal
always takes priority over the aclken clock enable signal.
Therefore your IP instantiation reset input must change from an active-High “SCLR”
signal with a minimum length of one clock cycle, to a active-Low reset input with a
minimum of two clock cycles.

• Input and Output TDATA port structure: The AXI specification calls for data to be
consolidated onto a single TDATA input stream. For ease of visualization you can view
the TDATA structure from the IP symbol and implementation details tab in the IP GUI.
For ease of IP instantiation the demonstration example testbench also shows how to
connect and functionally split signals from the TDATA structure. The demonstration
testbench assigns TDATA fields to aliases for easy waveform viewing during
simulation.

Figure 4-9, page 82 shows the TDATA port structure.

http://www.xilinx.com

82 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

Migrating Designs from XSVI to Video over AXI4-Stream
Bridging Xilinx Streaming Video Interface with AXI4-Stream Protocol (XAPP521), describes
how to migrate from Xilinx Streaming Video Interface (XSVI) to AXI4-Stream. You can also
find a link to the document in Appendix C, “Additional Resources.”

It is also recommended that you review “Video IP: AXI Feature Adoption,” page 55. This
describes how the Xilinx Video IP manage Video data using AXI4-Stream, and is useful
when migrating designs to use Video over AXI4-Stream.

Software Tool Considerations for AXI Migration (Endian Swap)
When a MicroBlaze™ PLBv4.6-based Big-Endian system is converted to an AXI-based
Little-Endian system, you need to consider the implications on software flows. This section
describes general considerations while developing software for such a design.

The software tool flows through the Xilinx Software Development Kit (SDK) remain the
same. The IDE and underlying software tools detect the MicroBlaze processor interface
automatically and infer the correct options to use.

Figure 4-9: TDATA Port Structure

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp521.pdf

AXI Reference Guide www.xilinx.com 83
UG761 (v13.4) January 18, 2012

General Guidelines for Migrating Big-to-Little Endian

For example, the compiler flag -mlittle-endian is added automatically when you build
board support packages and user applications in SDK-managed builds, but you must add
this option explicitly when directly calling the MicroBlaze GNU compiler from the
command line.

Libgen, XMD, and other command line software tools generate output or interact with the
processor system while taking into account its endianness. In addition, drivers are
properly associated with AXI embedded processing IP used in the design, including an
updated CPU driver for MicroBlaze v8.00.a.

However, the Xilinx Platform Studio IDE does not support the creation of board support
packages or user applications for AXI-based designs. Use SDK instead or invoke software
tools directly from the command line.

End-user applications written for a MicroBlaze big-endian system can work with the
equivalent little-endian system with minimal or no changes if the code is not sensitive to
endianness. Once the hardware migration has been completed, migrate software
applications using the same approach used when updating hardware designs previously
(see the SDK online help for suggested steps). Function calls in user applications to board
support package functions for OS libraries and drivers might need to be modified if the
API has changed.

User code, custom drivers or other code might need to be rewritten if the code is sensitive
to the representation of data in big-endian or little-endian formats.

General Guidelines for Migrating Big-to-Little Endian
The following guidelines summarize general considerations when migrating software
flows and code used in a MicroBlaze big-endian representation to a little-endian design.

1. Be aware of situations where software is sensitive to endianess, especially when
Reading or Writing data from, or to, memory, files, and streams.

2. Existing software that ran on a MicroBlaze PLBv4.6 big-endian system might need to
change:

a. XPS software flows do not support AXI; SDK must be used.

b. In SDK, import the new AXI hardware handoff, create new board software
packages, and import the software applications.

c. Modify driver calls as needed and ensure user code is endian-safe. User-
developed drivers might need to be re-written if their behavior is affected by
endianess.

d. If running the GNU tools on the command line and writing make files, the correct
compiler flag –mlittle-endian must be used.

3. MicroBlaze little-endian and big-endian software are not compatible:

a. Do not mix object files (.o) and libraries created with different endian data
representations.

b. Do not mix drivers unless they are known to be compatible.
c. Do not use ELF files built for big-endian systems on a little-endian system (and vice

versa).

d. Do not use generated Xilinx data files that are affected by endianess (for example
BIT files that include block RAM data - like ELF files) across systems.

e. Block RAM initialization and data sharing should reflect the endianess
requirements of the master.

http://www.xilinx.com

84 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

f. Do not use old application data files used by the application if it is affected by
endianess (byte ordering in the file).

g. Be aware of the endianess of MicroBlaze and write software code appropriately.
h. When exchanging data between big-endian and little-endian masters, user

application code and/or drivers need to manipulate the ordering of data to ensure
interoperability.

The following tables summarize the organization of data when MicroBlaze uses the Big-
Endian or Little-Endian format to represent various data types. This information was
reproduced from the MicroBlaze Processor Reference Guide (UG081). Appendix C,
“Additional Resources”, also contains this link.

Data Types and Endianness
MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the
parameter C_ENDIANNESS. The hardware-supported data types for the MicroBlaze™
processor are word, half word, and byte. When using the reversed load and store
instructions LHUR, LWR, SHR and SWR, the bytes in the data are reversed, as indicated by the
byte-reversed order.

The bit and byte organization for each type is shown in Table 4-5 through Table 4-7,
page 85.

Table 4-5: BIt and Byte Organization by Word Data Type

Word Data Type Value

Big-Endian Byte Address n n+1 n+2 n+3

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3

Big-Endian Byte-Reversed Order n+3 n+2 n+1 n

Little-Endian Byte Address n+3 n+2 n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+3 n+2 n+1 n

Little-Endian Byte-Reversed Order n n+1 n+2 n+3

Bit Label 0 31

Bit Significance MSBit LSBit

Table 4-6: Half Word Data Types

Half Word Data Type Value

Big-Endian Byte Address n n+1

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1

Big-Endian Byte-Reversed Order n+1 n

Little-Endian Byte Address n+1 n

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=mb_ref_guide.pdf
http://www.xilinx.com

AXI Reference Guide www.xilinx.com 85
UG761 (v13.4) January 18, 2012

High End Verification Solutions

High End Verification Solutions
Many third-party companies (such as Cadence Design Systems, ARM, Mentor Graphics,
and Synopsys) have tools whose function is to allow system-level verification and
performance tuning for system-level design. When designing large AXI-based systems, if
the highest possible verification and performance are required, it is recommended that
third-party tools be used.

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+1 n

Little-Endian Byte-Reversed Order n n+1

Bit Label 0 15

Bit Significance MSBit LSBit

Table 4-7: Byte Data Types

Byte Address n

Bit Label 0 7

Bit Significance MSBit LSBit

Table 4-6: Half Word Data Types (Cont’d)

Half Word Data Type Value

http://www.xilinx.com

86 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 4: Migrating to Xilinx AXI Protocols

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 87
UG761 (v13.4) January 18, 2012

Chapter 5

AXI System Optimization: Tips and Hints

AXI-based Xilinx® IP, third party IP, and user IP present a wide range of configuration
options and design choices that let you tune a system for size, Fmax, throughput, latency,
ease of use, and ease of debug. IP design decisions and system architecture also impact the
area and performance of the system. Given that AXI-based systems must span a wide
solution space from small Spartan® and Artix® class designs to very large high
performance Virtex® designs, there is a large configuration space for AXI IP and systems.

This chapter provides information and presents concepts that help you optimize your IP
designs and system configurations. In some cases, optimization for one attribute might
conflict with another requiring you to balance competing tradeoffs. For example,
improving timing through the use of additional pipelining negatively impacts area.

Table 5-1, page 88 and Table 5-2, page 90 illustrate the impact of different AXI Interconnect
and IP features, configuration parameters, and optimization options across various
criteria. The impact on each criterion is qualitatively described using a positive to negative
scale of Best (++), Better (+), Neutral (0), Worse (-), and Worst (--). When architecting,
optimizing, or diagnosing systems, use these tables to help with designing the IP or system
to maximize the attributes required by the application while minimizing negative
tradeoffs.

You need to be familiar with the AXI protocol, the AXI Interconnect IP (DS768) datasheet
and general XPS tool usage to better understand the optimization options and strategies
described in this chapter. Appendix C, Additional Resources also contains a link to this
document.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=ip+axi+doc;v=13.4;d=ds768_axi_interconnect.pdf

Chapter 5: AXI System Optimization: Tips and Hints

88 www.xilinx.com UG761 (v13.4) January 18, 2012

Table 5-1: AXI Interconnect Optimization/Feature Impact

Feature Configuration

S
iz

e/
A

re
a

T
im

in
g

/F
m

ax

T
h

ro
u

g
h

p
u

t

L
at

en
cy

E
as

e
o

f
U

se
/F

le
xi

b
ili

ty

E
as

e
o

f
D

eb
u

g

Notes

Clock Domain Conversion
(Optional, Default = OFF

Synch Clock Conversion - + 0 - + 0 Synch clock conversions require complex multi-cycle timespecs
(core level UCF is automatically generated by AXI Interconnect
TCL).

Async Clock Conversion -- + 0 -- ++ 0 Asynchronous clock conversion includes a 32-bit deep FIFO.
Synchronized conversion is generally preferred over
asynchronous conversion.

Width Conversion
(Optional, Default = OFF)

Downsizer -- -- -- - + 0 Size converters do not support multi-threading. They will stall
when IDs change until transactions on previous IDs are
complete. Upsizer -- - - - + 0

Endpoint Slave Protocol
Conversion from AXI4,
(Optional, Default = OFF)

AXI4-Lite 0 0 -- 0 + ++ AXI3 converter does not support multi-threading. It will stall when
IDs change until transactions on previous IDs are completed.
AXI3 converter also requires logic to handle splitting of long AXI4
bursts to AXI3 bursts of maximum length of 16. This logic adds
size and latency.

AXI3 - - - - 0 0

Connectivity Mode

Shared Access Shared Data ++ 0 -- 0 + ++

Crossbar - Sparse (Default) 0 + + 0 0 0

Crossbar - Fully Connected -- - + 0 0 0

ID Threading

Single Thread + + 0 0 + + Applies when a master declares that it does not use IDs or
interconnect is explicitly placed into Single Thread mode. Note
that configuration setting such as Shared Address Shared Data
mode (SASD), size conversion, or protocol conversion, might
automatically cause Single Thread mode to be used.

Multiple Thread Support 0 0 + 0 0 - As more threads are used and there is a greater potential for read
reordering or read interleaving, the more difficult it is to debug.

Issuance/Acceptance
1 (Default) + + - 0 + +

2, 4, 8, 16, 32 - 0 + - 0 -

Data Path Width
32 (Default) + + - 0 0 0

64, 128, 256, 512, 1024 -- - ++ 0 0 0

Legend: “++” = Best; “+” = Better, “0” = Neutral, “-“ = Worse, “--“ = Worst

www.xilinx.com

Chapter 5: AXI System Optimization: Tips and Hints

89 www.xilinx.com UG761 (v13.4) January 18, 2012

Register Slice
(Optional, Default = OFF)

Type 7 (Light Weight) - ++ - - + 0 AXI Interconnect has added a “Type 8” register slice that
automatically selects the register slice type based upon
interconnect configuration. Type 8 is recommended and should
be overridden only when warranted.

Type 1 (Fully Registered) -- ++ 0 - + 0

Type 8 (Automatic) - ++ 0 - + 0

Floorplanning
(Optional, Default = OFF)

Floorplan IP Blocks And/Or
Submodules

0 + 0 0 -- 0

Data Path FIFOs
(Optional, Default = OFF)

SRL - 0 + - 0 0 SRL FIFO is 32 deep.

BRAM -- 0 ++ - 0 0 BRAM FIFO is 512 deep. Use of additional BRAM FIFO option,
to delay AWVALID/ARVALID until FIFO occupancy permits
interrupted burst transfers, can further improve throughput at the
expense of increased latency.

Arbitration Priority
(Optional, Default = Round
Robin)

Fixed Priority Over Round
Robin

0 0 0 + - 0 Each master can be assigned a higher fixed priority that
supersedes masters at the default priority level of 0. Masters set
to the default priority of 0 share Round Robin priority.

AXI ChipScope Monitor
(Optional, Default = OFF)

ON - - 0 0 0 ++

AXI Hardware Protocol
Checker
(Optional, Default = OFF)

ON - - 0 0 0 ++

Table 5-1: AXI Interconnect Optimization/Feature Impact (Cont’d)

Feature Configuration

S
iz

e/
A

re
a

T
im

in
g

/F
m

ax

T
h

ro
u

g
h

p
u

t

L
at

en
cy

E
as

e
o

f
U

se
/F

le
xi

b
ili

ty

E
as

e
o

f
D

eb
u

g

Notes

Legend: “++” = Best; “+” = Better, “0” = Neutral, “-“ = Worse, “--“ = Worst

www.xilinx.com

Chapter 5: AXI System Optimization: Tips and Hints

90 www.xilinx.com UG761 (v13.4) January 18, 2012

Table 5-2: AXI Endpoint IP Optimization/Feature Impact

Feature Configuration

S
iz

e/
A

re
a

T
im

in
g

/F
m

ax

T
h

ro
u

g
h

p
u

t

L
at

en
cy

E
as

e
o

f
U

se
/F

le
xi

b
ili

ty

E
as

e
o

f
D

eb
u

g

Notes

IP Protocol
AXI4-Lite ++ 0 - 0 + ++ AXI Interconnect i s natively AXI4-based. Use of AXI3 protocol not recommended

for new designs.AXI4 0 0 0 0 0 0

Narrow Burst
Support

ON (Default) -- - - - 0 0 Narrow burst is assumed to be ON unless the AXI master IP specifically designates
this as OFF. Xilinx AXI Master IP generally do not use narrow burst and designate
themselves as OFF.

OFF
(Recommended)

0 0 0 0 0 0

Threading

Uses No Thread or
Issues Only a
Single Thread

+ + 0 0 + + Using a single thread while intermixing transactions destined to multiple different
AXI slave endpoints may trigger stalling by the deadlock avoidance logic in the AXI
Interconnect.Issues Multiple

Threads
0 0 + 0 0 -

Ability to Pipeline
Transactions

1 + + - 0 + + New transactions pipelined behind high numbers of pipelined transactions might
experience high latency, but throughput might be improved. Head of line blocking
can be caused by excessively pipelined transactions.> 1 up to 32 - 0 + 0 0 0

Data Path Width

32 + + - 0 0 0 Native Dat Path Width should be minimized while meeting performance
requirements of application. The caveat is that support for a wider native width that
minimizes size conversion in a system may be more beneficial.

64, 128, 256, 512,
1024

-- - ++ 0 0 0

AXI4 Burst Length
Short (1-4) 0 0 - + 0 0 Head of line blocking can be caused by long bursts. Transactions pipelined behind

long bursts might experience high latency, but throughput might be improved.Long (up to 256) 0 0 ++ -- 0 0

Legend: “++” = Best; “+” = Better, “0” = Neutral, “-“ = Worse, “--“ = Worst

www.xilinx.com

AXI Reference Guide www.xilinx.com 91
UG761 (v13.4) January 18, 2012

AXI System Optimization

AXI System Optimization
In general, system optimization follows the guidelines in the following subsections.

Size/Area Optimization Guidelines
When considering your AXI IP or system design, use the following size and area
guidelines:

1. Minimize the clock domain conversions by reducing the logic associated with clock
domain conversion. Use as few clocks as possible and, if clock conversion is necessary,
attempt to keep the clocks to synchronous integer ratios.

2. Use Sparse Crossbar connectivity or Shared Address Shared Data (SASD)
configurations of the AXI Interconnect. Analyze the connectivity and bandwidth
requirements of the system.
When possible specify the minimum required connectivity map for the system when
AXI Interconnect is used in crossbar mode to remove data path logic for master/slave
connection paths that are not required. A SASD set of connected data configuration
consumes even less logic because a single data path is shared by all devices and only
one transaction is outstanding at a time.

3. Reduce use of multi-threading in AXI memory mapped IP including reduced values of
issuance or acceptance. Reducing use of threads and transaction pipelining simplifies
the transaction handling logic of the AXI Interconnect, but throughput could be
impacted.

4. Avoid using AXI3 or AXI4 narrow bursts. Narrow bursts are defined in the AXI
protocol but are generally not used by master IP. When a master IP specifically
designates that they do not issue narrow bursts, some slaves (such as memory
controllers) can detect that they will therefore never receive a narrow burst transaction
and can omit narrow burst support logic.

5. Minimize protocol conversions and use AXI4-Lite where possible. Protocol conversion
to AXI3 slaves utilizes logic. The AXI4-Lite protocol requires less logic to support,
especially when all devices on an AXI Interconnect are AXI4-Lite type. Using
AXI4-Lite protocols and grouping AXI4-Lite IP into a separate subsystem can reduce
logic.

6. Where appropriate, segment interconnects into smaller, less complex subsystems
where each subsystem can be optimized as described in the previous steps. This
requires analysis of the protocol types, bandwidth, and master/slave connectivity.
Grouping IP into subsystems that minimize connectivity requirements and minimize
the number of conversion operations can reduce logic.

7. Reduce data path width and minimize size and width conversions. Design systems to
the minimum required data path width while also minimizing width conversions. Be
careful not to inadvertently mismatch the AXI Interconnect core data width or core
clock with the width and clock of all the attached endpoints; this can result in an
excessive number of conversions. If possible, handle width conversion inside the user
IP instead of using a general-purpose memory mapped AXI width converter.
A protocol-compliant AXI memory mapped width converter block is complex due to
issues like address calculation, multi-thread support, transaction splitting, unaligned
bursts, and arbitrary burst length.

If width conversion can be performed more efficiently in the user IP or in the
application domain before reaching the AXI interconnect, the overall area is reduced.

http://www.xilinx.com

92 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Timing / Fmax Optimization Guidelines
1. Turn on register slices where appropriate. Register slices act as AXI pipeline stages to

break combinatorial timing paths across the register slice. AXI Interconnect provides
an optional register slice at the boundary of each attached endpoint. The FIFO
Generator can also generate standalone instances of AXI register slices. Different
register slice types and the granularity to set them on individual AXI channels
provides fine grain control of register slices placement.

2. Large and complex IP blocks such as processors, DDR3 memory controllers, and PCIe
bridges are good candidates for having register slices enabled. The register slice breaks
timing paths and allows more freedom for Place and Route (PAR) tools to move a large
IP block away from the congestion of the interconnect core and other IP logic.

a. Overuse of register slices, especially in relatively full designs, can become
counter-productive to timing by increasing the area and therefore the congestion
for PAR tools.

b. As required by the AXI specification, user IP must avoid combinatorial paths
between inputs and outputs of the same AXI interface. This AXI protocol rule
helps improve overall system timing.

3. Reduce data path width and minimize size/width conversions (as described in
Size/Area Optimization Guidelines, step 7).

4. Where appropriate, segment interconnects into smaller or less complex subsystems
where timing critical IP can be isolated away from non-critical IP. For example, a group
of low bandwidth IP can be placed on a slower clock, smaller data width AXI
Interconnect to free up logic and congestion from the higher performance IP running
at higher clock rates and wider data paths.

5. Separate IP using register slices then floorplan the IP blocks (this is an advanced
strategy). After placing register slices to provide timing isolation, IP blocks can be
floorplanned further away from the interconnect core to reduce congestion around
that block core.

Throughput / Bandwidth Optimization Guidelines

1. Increase clock frequencies using timing optimizations described in Timing / Fmax
Optimization Guidelines, page 92. Increasing clock frequency, such as through the use
of register slices to break long combinatorial paths can improve overall bandwidth.

2. Increase data path widths. Wider data paths carry more information per clock cycle.

3. Turn on data path FIFO buffers. Buffers can provide elasticity to hide temporary stalls
or backpressure in the data flow. Use of the additional BRAM FIFO option, to delay
AWVALID/ARVALID until FIFO occupancy permits interrupted burst transfers, can
further improve throughput at the expense of increased latency.

4. Segment interconnects to group high performance IP together and place lower
performance IP in a separate interconnect.
Isolating high performance IP into a smaller subsystem permits greater flexibility to
optimize that subsystem for higher throughput.

5. Increase transaction burst length. Longer bursts reduce the potential for stall cycles
caused by address arbitration and control logic overhead.

Longer bursts also signal to the AXI slave the intent to move a large amount of
contiguous data so that slaves, such as memory controllers, can better optimize their
response, and Reduce the relative amount of AXI address channel bandwidth.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 93
UG761 (v13.4) January 18, 2012

AXI System Optimization

This reduces address channel congestion around the shared address arbiter logic in the
AXI Interconnect.

6. Increase transaction pipelining including issuance and acceptance. Pipelining
transactions allows arbiters and control logic in the slaves to work ahead on the next
transaction while completing a previous transaction. This helps to reduce stalling due
to arbitration/control cycles between back to back transactions.

7. Exploit parallelism of Sparse Crossbar AXI Interconnect. In Sparse Crossbar Mode, the
AXI Interconnect supports parallel data flow when multiple masters transfer data to
multiple independent slaves.

8. Avoid issuing read/write address requests until the IP ensures it can provide data
while inserting minimal idle cycles in the data stream. Otherwise when a read or write
data transfer is in progress, stalling the data phase of the transaction could prevent the
AXI Interconnect from servicing other read or write data transfers. If the master or
slave stalls, it could be blocking other devices, limiting system throughput.

For higher throughput, IP should be designed to request reads or writes when they are
ready to be serviced with minimal stall cycles. The use of buffering might be beneficial.
The worst case is a very slow AXI master requesting write bursts. When the slow
master is granted arbitration, it will block other writes to the same slave until it
completes its slow write transaction; this can take many clock cycles to transfer each
beat of data.

The use of Data Path FIFOs (with delayed AWVALID/ARVALID feature) in the AXI
Interconnect can help mitigate the system throughput impact of slow masters.

Latency Optimization Guidelines
1. Minimize clock and width conversions. Clock and width conversion require logic that

adds additional cycles of latency.

2. Avoid using AXI3/AXI4 narrow bursts. Some AXI slave devices such as memory
controllers must use logic to internally convert narrow bursts to full width bursts. This
packing logic adds latency. If all masters connected to a given slave can designate that
they do not perform narrow bursts, the narrow burst logic in the slaves can be
disabled, thereby reducing area and latency.

3. Increase arbitration priority of latency sensitive masters. If some masters are more
latency sensitive than others, increasing the priority of the latency sensitive master
helps its requests to be serviced more quickly.

4. Reduce transaction burst lengths to prevent prolonged head of line blocking. Long
bursts lengths can tie up data paths for longer periods of time while latency sensitive
masters have to wait. Reducing burst length provides more frequent arbitration cycles
where a latency sensitive master can gain access.

5. Increase clock frequency while trying not to using register slices. This reduces the
absolute latency time. If register slices are not added, the number of clock cycles of
latency does not change, only the period of each clock cycle.

6. Control Issuance/Acceptance of pipelined transactions from competing IP that are not
latency sensitive. Head of line blocking can be introduced by high numbers of
pipelined transactions. By limiting issuance/acceptance, the number of pipelined
transactions is limited so that there are fewer potential transactions pipelined ahead of
a latency sensitive transaction.

7. Arrange system address map and address access patterns to exploit row/bank
management features of AXI DDRx (MIG) memory controllers.

http://www.xilinx.com

94 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Accessing address locations of open banks and rows (pages) of memory reduces
DRAM memory access time.

8. Exploit parallelism of crossbar AXI Interconnect or segment interconnects to reduce
congestion and shorten path from latency critical master to slave. AXI Interconnect can
be segmented, grouped, and optimized to arrange the latency sensitive masters closest
to the slaves they wish to access.

Ease of Use and Debug Optimization Guidelines
1. Greater ease of use is accomplished by leaving each IP in its native, most convenient

clock, width, protocol, etc and using the per-port configurability of the interconnect to
adapt to the IP.

2. Utilizing full crossbar connectivity provides more flexibility to change active source/
destinations of transactions whereas sparse connectivity limits the flexibility of which
masters can communicate with which slaves. An even simpler solution is to use the
Shared Address Shared Data (SASD) mode of the AXI Interconnect. SASD mode
permits only a single read or write transaction to execute at a time with no overlapping
or pipelining of transactions. The SASD mode of the AXI Interconnect stalls
transactions so only a single one at a time can progress. This eases the debug and
understanding of transaction sequences.

3. The AXI4-Lite protocol is much simpler than the AXI3 or AXI4 protocol. If AXI4-Lite is
sufficient for an IP, using it simplifies the design.

4. Reducing the use of threading and transaction pipelining makes the system easier to
debug and analyze using the AXI ChipScope™ debug monitor. Threading and
pipelining make it more difficult to correlate activity on each of the AXI channels with
a logical transaction. High levels of threading and pipelining also might be more likely
to expose functional bugs in user IP.

5. Enabling the AXI ChipScope monitor permits full waveform capture and triggering in
hardware. This enables hardware runtime viewing/triggering of some or all AXI
signals at the boundary of the AXI Interconnect. This can be used to help diagnose
functional or performance issues in hardware.

6. AXI hardware protocol checkers also help detect and more quickly isolate the source of
protocol violations due to functional errors.

AXI4-based Multi-Ported Memory Controller:
AXI4 System Optimization Example

AXI4 MPMC Overview
You can create an AXI4-based Multi-Ported Memory Controller (AXI MPMC) using a
combination of an AXI Interconnect and an AXI memory controller core (for simplification,
this is referred to as AXI MIG). This permits multiple AXI4 masters to share a common
physical memory.

The Interconnect can be configured in an N Master to 1 Slave mode with AXI MIG as the
slave connected to the AXI Interconnect as shown in Figure 5-1, page 95.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 95
UG761 (v13.4) January 18, 2012

AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example

IP Configuration decisions across AXI masters, the AXI Interconnect, and AXI MIG can
greatly affect the characteristics of the system, such as size, Fmax, throughput, and latency.
By using the general optimization information described previously, the AXI MPMC can
be tuned for a balance of size and performance. This section works through an example of
applying system optimization techniques to tune the AXI MPMC.

For information on how to create an AXI MPMC design using EDK or Project Navigator,
see the AXI Multi-Ported Memory Controller Application Note, (XAPP739).

For an example of an AXI MPMC used in a high performance system, see Designing
High-Performance Video Systems with the AXI Interconnect, (XAPP740).

Appendix C, Additional Resources, also contains links to these documents.

Initial Memory Controller Configuration
Assume the AXI MPMC is used for the purpose of transferring multiple data streams to
and from a common physical memory. The first step is configuring the memory controller
to meet the bandwidth requirements of the system. The AXI MIG supports physical
memory widths of 8, 16, 32, 64, and 128 bits wide with a memory clock rate of 300 to 400
MHz for a -1 speed grade Virtex-6 device (check MIG documentation for other clock and
width limitations). This equates with a 600 to 800 MHz data rate on the physical data lanes.
Assume that four AXI masters are required, each consuming up to 100 MBytes/sec of
bandwidth for reads and 100 MBytes/sec of bandwidth for writes with a native 32 bit x 48
MHz AXI4 interface. This implies 4x2x100 MBytes/sec = 800 MBytes/sec of total
bandwidth is required. For the memory controller configuration options, Table 5-3 can be
derived:

Figure 5-1: AXI4 MPMC Block Diagram

Table 5-3: Memory Controller Configuration Options

Physical DDR3
Data Width (Bits)

Memory Clock
(MHz)

Data Rate (MHz)
Max theoretical

Bandwidth
(MBytes/sec)

8 300 600 600

8 400 800 800

16 300 600 1200

16 400 800 1600

32 300 600 2400

32 400 800 3200

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp739_axi_mpmc.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp740_axi_video.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp740_axi_video.pdf

96 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

The two smallest memory configurations that would meet the bandwidth requirements of
the system are using a 16-bit DDR3 running 300 to 400 MHz memory clock rate, providing
1200 to 1600 Mbytes/sec of theoretical bandwidth (67% to 50% memory utilization at 800
Mbytes/sec). In theory an 8-bit DDR3 running at 400 MHz meets the bandwidth too, but
given overhead (lost clock cycles) for refresh, write leveling, read-write bus turnaround
time, and row/bank address changes, some more efficiency margin is required. With AXI
MIG, the AXI slave interface data width is natively equal to four times the physical
memory data width and the AXI slave clock is ½ the memory clock frequency, so a 16-bit
DDR3 @ 300 to 400 MHz directly corresponds to an AXI slave interface that is natively
64-bits wide at 150 to 200 MHz.

Initial AXI Interconnect Configuration
To be able to consume all the bandwidth from the memory controller, the AXI Interconnect
core must be have at least the same bandwidth as the memory controller. Given the
recommendation to avoid width and clock conversion that impact size and timing, the
interconnect core and slave side port should be configured as 64-bits at 150 to 200 MHz to
match the native AXI interface of the memory controller.

To configure the master side of the AXI Interconnect, note that the AXI master is natively
32 bits at 48 MHz. This requires a 32- to 64-bit size conversion for each master. In addition,
the 48 MHz AXI clock on each AXI master would result in an asynchronous clock
conversion if the interconnect is running at 200 MHz.

Clock Conversion
Recommendation

The recommendation for clock conversion is to use synchronous ratios over asynchronous
ratios to reduce logic. Instead of a 200 MHz Interconnect clock, the system can be
configured to attempt to remove asynchronous clock conversions by employing a:

• 48 MHz AXI master clock,

• 48 x 4 = 192 MHz AXI Interconnect clock, and

• 192 x 2 = 384 MHz memory clock

Note: The 48, 192, and 384 MHz clocks should be driven by the same Mixed Mode Clock
Manager (MMCM) block to be phase aligned.

64 300 600 4800

64 400 800 6400

128 300 600 9600

Table 5-3: Memory Controller Configuration Options (Cont’d)

Physical DDR3
Data Width (Bits)

Memory Clock
(MHz)

Data Rate (MHz)
Max theoretical

Bandwidth
(MBytes/sec)

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 97
UG761 (v13.4) January 18, 2012

AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example

Figure 5-2 shows an example.

AXI4 Master Configuration
The use of AXI4 transactions by the AXI4 master impacts the performance that can be
obtained from the memory controller and system. Because this system requires significant
bandwidth from the memory controller, maximizing the burst length of AXI4 transactions
to 256 beats helps improve overall data bandwidth.

Maximize Burst
Length

Longer bursts reduce address arbitration/control cycles and help keep the memory
controller in the same row, bank, and read/write direction longer. Long bursts would
normally impact latency, but assuming this application is not very latency sensitive and
that data path FIFOs are enabled for elasticity, the use of long bursts should not result in
head of line blocking/stalling.

No Narrow Burst
Transactions

The AXI4 master should not issue any narrow burst transactions. Narrow bursts are
defined in the AXI specification as transactions where the size of the AXI transaction is
more narrow than the native data width of the interface. Such bursts are less efficient in
terms of bus utilization and require extra logic in the memory controller to handle
repacking of any narrow bursts into full width bursts. In this example:

• Size AXI transactions issued by the masters to 32-bit
(AxSIZE = 0x2).

• Enable the modifiable bit on AXI transactions (AxCACHE[3]=1) to ensure that any
downstream upsizer can fully pack data up to wider widths. This allows costly
narrow burst support logic to be removed from the memory controller.

In XPS, this is designated by the C_SUPPORTS_NARROW parameter that then allows XPS to
automatically configure AXI MIG to omit narrow burst support logic. In a CORE
Generator™ context, you must manually configure AXI MIG to omit narrow burst support
logic.

Figure 5-2: AXI Interconnect Master Side Configuration Block Diagram

http://www.xilinx.com

98 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Pipeline
Transactions

Design the AXI4 master to pipeline transactions so it can issue new address requests while
servicing the data transfers for previous transactions. Pipelining transactions helps overlap
address and control cycles with data transfer cycles to improve data path efficiency and
throughput. However, new address requests should not be made until it is ensured that the
master can supply sufficient write data or has sufficient ability to accept read data to
complete a full burst with minimal stalling. A master that issues an address request and
excessively stalls the data transfer phase of its requested transaction could cause
backpressure that could eventually stall or slow the whole system.

Single Thread
Transactions

Design the AXI4 master so that it operates using only a single thread for all transactions
(declared using the C_SUPPORTS_THREADS=0 parameter). By not using multiple threads,
the logic in the AXI4 master can be simplified because it can be designed to rely upon write
responses and read data being returned in order. The use of a single thread also benefits the
AXI Interconnect performance because the upsizer is active in this example system.
Upsizers in the AXI Interconnect stall when changing ID threads so using a single thread
avoids stalling of transactions passing through the upsizer. Ensure that the AXI4 master
declares itself not to use threads so that AXI Interconnect can be configured to omit its
multi-thread support logic which reduces area and improves timing. Using a single thread
also makes debug easier because AXI transactions observed in the ChipScope monitor are
easier to decode and correlate across a system.

Refining the AXI Interconnect Configuration
After a first pass to establish the basic configuration of AXI MIG, AXI Interconnect, and the
AXI4 master of the user, the user can then perform a second pass at refining the AXI system
configuration.

Independently
Configure Converter
Banks

When fine tuning the configuration of the AXI Interconnect, it is useful to understand the
AXI Interconnect converter bank block. The converter bank handles size, clock, and
protocol conversion in addition to register slice and data path FIFO features.

The converter bank can be independently configured at each endpoint of the AXI
Interconnect, as shown in Figure 5-3.

Figure 5-3: AXI Interconnect: Crossbar Block Diagram

AXI Interconnect

Slave
Interface

Master
Interface

SI Hemisphere MI Hemisphere

Crossbar

Master 0 Slave 0

Slave 1Master 1 R
eg

is
te

r
S

lic
es

R
eg

is
te

r
S

lic
es

U
p-

si
ze

rs

U
p-

si
ze

rs

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

D
at

a
F

IF
O

s

C
lo

ck
 C

on
ve

rt
er

s

D
ow

n-
si

ze
rs

P
ro

to
co

l C
on

ve
rt

er
s

D
at

a
F

IF
O

s

X12047

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 99
UG761 (v13.4) January 18, 2012

AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example

Notice that from the perspective of the attached AXI master, shown in Figure 5-3, page 98,
the data path FIFOs are positioned after the upsizer and the clock converter so that the
FIFO interfaces to the interconnect core at its higher native width and clock.

Because the AXI masters are at a relatively lower bandwidth than the memory controller
(1/2 width, ¼ clock frequency), turning on data path FIFOs allows the interconnect to
buffer up the wider width transactions to and from the memory controller and service each
of the AXI masters at their slower rates on the other side of the FIFOs. Data path FIFOs
reduce stalling of the memory controller due to the slower data rate AXI masters. The AXI
Interconnect offers data path FIFOs in options of 32 deep or 512 deep FIFOs. Because the
AXI4 master is generating long bursts up to 256 beats in length, configure the FIFOs as 512
deep to fit an entire burst.

Beginning in release 13.3, the data path FIFOs have a new optional feature to delay
AWVALID/ARVALID until FIFO occupancy permits interrupted burst transfers
downstream. This feature causes:

• Write address requests to be withheld from the crossbar until the write data path FIFO
has buffered all the data for the transaction.

• Read address requests to be withheld from the crossbar until the read data path FIFO
has sufficient vacancy to store the entire transaction.

This feature ensures that the crossbar does not see a transaction request until the data path
FIFO can guarantee that it can source/sink the entire transaction at the full bandwidth of
the crossbar without introducing stall cycles in the data transfer. This feature is especially
useful in situations similar to the example design, shown in Figure 5-2, page 97, where the
master has a relatively lower bandwidth than the slave (memory controller).

Timing
Considerations

For timing, the AXI Interconnect should be configured to enable register slices at the
interface to the memory controller. Because the memory controller’s AXI interface operates
at the highest width and clock frequency in the system, it is likely a critical path unless a
register slice is turned on. A Type 8 register slice can be enabled on all 5 channels at the AXI
interface of the memory controller to allow the AXI Interconnect to optimize the kind of
register slice best suited to each AXI channel. Note that a register slice at the AXI master
interface is not required. This is because the AXI master and the upsizer are both clocked
by the slower 48 MHz side of the clock converter. Also, the clock converter acts as a register
slice since it provides timing isolation between 48 MHz and 192 MHz clock domains.

Issuance/Acceptance
Values of 2 or Higher

Also, issuance and acceptance values at each port of the AXI Interconnect can be optimized
to support transaction pipelining and to limit the pipelining so that head of line blocking is
reduced. The default issuance assigned to an AXI masters is 1, unless configured or
designated otherwise. An issuance of 1 minimizes logic but does not permit transaction
pipelining. Set the issuance to a value of 2 or higher.

Because the target system seeks to maximize throughput, you can calculate the maximum
number of outstanding transaction possible without overflowing the data path FIFOs. The
data path FIFOs are 64 bits wide x 512 deep as described above.

That is equivalent storage to 32 bits x 1024 deep. If the AXI4 master is generating AXI
transactions of maximum length 256, then up to 4 transactions fit into the data path FIFOs.

The AXI Interconnect supports issuance and acceptance values of 1,2,4,8,16, and 32.
Reasonable values of issuance for each AXI master would therefore be 2 or 4.

• Given that there are 4 masters, an issuance of 2 means that memory controller would
need an acceptance of 8 to fully pipeline 2 transactions from each master.

http://www.xilinx.com

100 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

• Given that transactions are all long bursts, pipelining more than 8 transactions at the
memory controller becomes excessive. An issuance setting of 4 at the masters is too
high because it would require the slave to consume up to 16 transactions to utilize.

• Given that master issuance of 4 might be excessive while an issuance of 1 prevents
transaction pipelining, a setting of 2 is reasonable.

Adding a Processor to the AXI MPMC System
Adding a processor to the example AXI MPMC system complicates the optimization of the
system because processors tend to be very latency sensitive with respect to their
performance. If the processor must also share the memory controller to run complex
software such an operating system or protocol stack, you must take more care to balance
the low latency requirements of the processor with the high throughput requirements of
the other AXI masters.

Processor traffic could interfere with other devices resulting in reduced throughput from
other masters. This is due to random memory accesses that disrupt the row/bank access
patterns of the other devices and because the processor can generate a number of small
length transactions. Small length transactions corresponding to 4- or 8-word cache lines
can consume several memory clock cycles for row/bank access time, read/write turn
around, and so forth. Therefore, the actual data bandwidth transferred by the processor
might be small, but because they can disrupt the otherwise linear, long burst access
patterns of the memory controller, their traffic actually displaces a much larger amount of
the theoretical system bandwidth.

For example, 10 Mbytes/sec of delivered data bandwidth to the processor, might actually
displace the equivalent of 100 MBytes/sec of the theoretical bandwidth of the memory
controller. Optimizations to improve processor performance could force a tradeoff in
system throughput, further eroding the bandwidth available to other masters.

Considerations when
Adding a Processor

If a processor is added to the system, generally, you need to consider:

• If the memory width or clock should be increased to provide more available margin.

• Whether to reduce the burst length of the other AXI masters to reduce the time that a
processor waits for a burst transaction to complete.

• If the highest arbitration priority can be granted to the processor to minimize its
latency.

• If the issuance/acceptance values for other devices might be reduced to limit head of
line blocking due to pipelined transactions.

• If the system clocking can be altered to favor the memory path of the processor having
no clock conversion or only synchronous clock conversion.

Note: The MicroBlaze™ processor can support a native 128-bit and 256-bit and 512-bit wide
AXI interface. This is an example of application domain size conversion that is more efficient that
generic AXI width conversion. This MicroBlaze wide cache configuration is ideal for connecting
to an equally wide memory controller to remove the latency impact of size conversion.

The optimizations described to improve processor performance are often the opposite step
for maximizing system throughput. Therefore, either more margin is needed by using a
larger memory controller or you must carefully optimize your software (to minimize cache
misses) and be more willing to experiment with the system to find the right balance
between latency and throughput.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 101
UG761 (v13.4) January 18, 2012

AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example

Additional Potential Optimizations for AXI MPMC
The previous AXI MPMC optimization information steps through an example of working
through the design optimization process, while attempting to balance tradeoffs between
various design criteria.

The following subsections describe further optimizations ideas than might be applicable.
These optimizations might or might not be suitable for a given AXI MPMC design and
could require experimentation to see if the technique is useful in a given situation.

AXI Interconnect: Shared Address Shared Data Mode

If there is enough extra unused bandwidth, the AXI Interconnect can be configured in
Shared Address Shared Data (SASD) mode.

In this mode, the AXI Interconnect core is simplified to operate on only a single read or a
single write at a time and even shares read and write addresses over the same wires.

This mode removes support for pipelined transactions and prevents simultaneous read
and writes, but significantly reduces logic. Given that long bursts are used, the penalty of
stall cycles between transactions and lack of simultaneous read and write data flow might
be acceptable within the bandwidth requirements of the system. SASD also makes system
debug and waveform analysis of AXI transactions substantially easier. SASD is also
generally more lenient about functional bugs and protocol violations from endpoint IP.

Separate IP Groups into Separate AXI Interconnect Subsystems

If an AXI MPMC design has many masters, and the design has difficulty meeting timing,
one possible strategy is to group two or more IP into a separate N x1 AXI Interconnect that
then feeds the main AXI Interconnect. This breaks a wide fan-in Interconnect into multiple
smaller fan-in Interconnects. Each smaller Interconnect is easier to route and meet timing,
and also provides a greater range of options for the location of register slices, FIFOs, size,
clock, and width converters.

Grouping IP
Example

For example, when two AXI Interconnects connect directly to each other, a set of
back-to-back register slices can be enabled using one register slice from each adjacent
interconnect. This can be used to span longer routing distances in large AXI MPMC
systems.

In some cases using multiple AXI Interconnects can even reduce overall system size. When
an AXI MPMC requires a large number of upsizers, especially with large steps like 32- to
128-bits, separating the masters into subgroups using smaller width AXI Interconnects can
reduce the number of upsizers which consume area and impact timing.

Note: in XPS, the connection of two cascaded AXI Interconnect instances together requires that an
AXI-to-AXI Connector IP be instantiated. This bridge IP provides a tool mechanism for XPS to
cascade interconnect, but logically it contains only wires and consumes no logic.

http://www.xilinx.com

102 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Debug and Analysis:
Using AXI ChipScope Monitor and AXI Hardware Protocol Checkers

In XPS, the AXI ChipScope™ Debug monitor is a feature that provides waveform capture
and triggering of AXI interface signals in hardware. The AXI ChipScope monitor can be
used to help debug functional issues in hardware or to help diagnose performance issues.

Analyzing Complex
System Activity

You can place multiple AXI ChipScope monitors around the system and cross-trigger
between each of them to analyze more complex system level activity. The AXI Hardware
Protocol Checker feature is available that can trigger the AXI ChipScope monitor when
some types of AXI protocol violations occur. The AXI Hardware Protocol Checker can
more quickly isolate the source of protocol violations.

Floorplanning
AXI IP connected to the AXI Interconnect can be floorplanned to improve placer results
and reduce routing congestion. To make floorplanning easier in large FPGAs, enable extra
register slices to provide a more distinct flip flop-based boundary at the AXI IP interface.

Note: After any significant changes to the AXI Interconnect configuration, floorplan locations might
need to be rechecked and updated as necessary. Otherwise subsequent changes to the AXI
Interconnect, such as turning on data path FIFOs, can change the footprint and necessary placement
of the AXI Interconnect.

Cadence Bus Functional Models

XPS supports instantiation of AXI Bus Functional Models (BFMs) and AXI Protocol
Monitors for use in simulation to exercise and test AXI IP. This feature is a Cadence
product available for XPS.

Using BFMs Xilinx recommends that these BFMs be used for verification of user IP under development.
Given the potential complexity of understanding AXI transactions, especially across
pipelined transactions and multi-threaded traffic, it can be extremely difficult to debug
subtle functional errors or isolate the root cause of protocol violations solely in hardware.
The simulation domain is usually a far less expensive method for verifying and debugging
new AXI IP before use in complex systems. See the AXI Bus Functional Models User Guide
(UG783) and the AXI Bus Functional Model Data Sheet (DS824) for more information.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 103
UG761 (v13.4) January 18, 2012

Common Pitfalls Leading to AXI Systems of Poor Quality Results

Simpler but Wider Interconnect and Memory Controller

Another potential strategy for an AXI MPMC system is to oversize the width of the
memory controller and AXI Interconnect core, such as by doubling the memory width to
double the theoretical system bandwidth. By adding extra potential system throughput,
the configuration of the rest of the system is much more simple.

For example, a system initially requiring a 16-bit DDR3 at 400 MHz with the AXI
Interconnect core configured as 64-bits at 200 MHz could be reconfigured with a 32-bit
DDR3 at 300 MHz and an AXI Interconnect configured as 128 bits at 150 MHz. The extra
bandwidth from doubling the physical memory width can be used to allow greater system
simplifications, including:

• Reducing AXI clocks from 200 MHz to 150 MHz to improve timing.

• Reductions in clock frequency could permit register slices to be turned off

• Reductions in clock frequency could permit use of a slower speed grade FPGA
device

• Allow crossbar to be reconfigured into SASD (this disables transaction pipelining and
multi-threading support)

• Simplifies system debug

• Provides room for future system bandwidth expansion (you can later increase
clock frequencies, enable crossbar, and so forth.)

• Allow masters to use shorter burst lengths to reduce latency or reduce the FIFO/
buffering requirements of the systems

Note: Increasing memory controller and AXI Interconnect data width could introduce new size
conversion requirements and board-level requirements into the system that might offset these AXI
system simplifications so analysis and experimentation is required to determine if this approach is an
overall improvement for the given application.

Common Pitfalls Leading to AXI Systems of Poor Quality Results
This section describes common pitfalls designers might encounter leading to the design of
AXI systems that are of a larger than expected area, have poor performance, or have poor
timing.

Over-Sizing a Memory Controller
AXI Virtex-6 MIG supports DDR3 physical memories in 8, 16, 32, 64, and 128 bit widths,
which translates into a 4 times wider native AXI data width of 32, 64, 128, 256, and 512 bits
wide.

If a system contains only a 32-bit microprocessor and associated AXI4-Lite peripherals,
then connecting it to a 64-bit physical DDR3 memory is wasteful of logic and would
actually degrade performance. Such an AXI MIG would have very large area for the
physical interface logic and the 256 bit data paths inside the AXI MIG. Also, the native
256-bit AXI interface would have to be upsized from the 32-bit AXI interface of the
processor adding further area and latency.

Size the AXI MIG to meet the bandwidth needs of the system while minimizing
unnecessary size conversions. This situation can be common when using fixed evaluation
boards like the ML605 which contain a 64-bit DDR3 DIMM. You might be working from a
reference design containing an AXI MIG configured for a full, 64-bit DDR3 DIMM that is
oversized for a simple MicroBlaze processor application.

http://www.xilinx.com

104 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Incorrect Core Data Width or Core Clock for AXI Interconnect
Incorrectly setting the core data width or connecting the wrong core clock to the AXI
Interconnect can severely impact the system.

For example, consider a system with five masters and five slaves connected to AXI
Interconnect. Assume that each master and slave is 64-bits wide at 100 MHz. If the AXI
Interconnect is also configured to be 64-bits wide at 100 MHz, then no clock or width
converters are used. However, if the interconnect core data width is accidently configured
to be 32-bits wide at 75 MHz, then the same system would then need to incur a 64:32 bit
downsizer for each master, a 32:64 bit upsizer for each slave and asynchronous clock
converters at every master and slave. The extra cost of 10 size converters and 10
asynchronous clock converter results in poor timing, very large area, and very high
latencies in the system.

Additionally, the throughput in the system is greatly constrained because wide 64-bit AXI
traffic from the masters and slaves are funneled through a much more narrow and slower
32-bit data path in the AXI Interconnect. This would result in stall cycles between every
data beat the masters and slaves are trying to transfer.

Watch For Wrong
Clock and
Interconnect Data
Widths

Because XPS handles width and clock conversion configurations automatically, connecting
the wrong interconnect clock or setting the wrong interconnect data width causes XPS to
automatically activate all the necessary conversions to make the system function. The
result is a system that might appear to function and completes all AXI transactions, but the
system bandwidth, area, latency, and timing could be very undesirable.

Overuse of Register Slices
In general, register slices are useful for helping to close timing in a system. However,
excessive use of register slices may be counterproductive.

For example, enabling all register slices on all AXI interfaces in a large system might
increase the area of a system leading to routing congestion and longer map, place, and
route times while not improving timing.

Incrementally Add
Register Slices

The recommended approach is to incrementally add register slices when timing fails
starting at the interfaces with highest clock frequencies and data widths. Register slices
might also be needed for large crossbar interconnects or at AXI interfaces where size
conversion is performed. If large numbers of register slices are required to meet timing in
a large system, floorplanning may be needed to help guide the place and route tools.

Do Not Place
Register Slices on
AXI4-Lite IP

Generally, register slices should not be placed on all AXI4-Lite IPs.

The recommended approach is to segment AXI4-Lite IP onto a separate SASD AXI
Interconnect and clock this AXI interconnect and its attached AXI4-Lite IP at a slower
common clock frequency to better meet timing. If timing improvement is needed on an
AXI4-Lite Interconnect, first enable the special internal register slice rank inside the SASD
Interconnect; then add register slices only on specific channels of AXI4-Lite IP that fail
timing.

Also, using the wrong type of register slice can lead to undesirable effects.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 105
UG761 (v13.4) January 18, 2012

Common Pitfalls Leading to AXI Systems of Poor Quality Results

Watch For Wrong
Register Slice Types

For example, type 1 register slices support back-to-back data beats without inserting stalls
while type 7 register slices use less area, but insert a stall after every data transfer.

• The type 7 register slice is ideal for AXI4-Lite interfaces or for AW, AR, and B channels
of an AXI interface where back-to-back transfers do not occur or occur infrequently.

• The type 1 register slice is designed for R and W channels where burst transactions
occur.

• For convenience, a type 8 register slice option is provided which automatically
switches between type 1 and type 7 based on the AXI Interconnect configuration.
Type 8 is recommended and should only be overridden when specifically warranted.

Skipping Simulation-Based Verification of New IP
AXI4 provides a rich protocol that can:

• Scale into more complex systems and can

• Support sophisticated protocol features such as multi-threading and transaction
pipelining

• Manage transaction ordering and completion rules to manage traffic among multiple
AXI masters and slaves in a system.

The richness of the AXI protocol and the possible concurrency of data transfer in a
crossbar, make hardware-only based debug and verification of new AXI IP much more
challenging.

Verify New IP with
BFM

New IP should be verified in simulation using AXI Bus Functional Models (such as the
Cadence® BFM available for XPS) and AXI protocol checkers/assertions (available from
Cadence or from the ARM® website).

Simulation-based verification results in far shorter debug cycle time, easier identification
and isolation of functional problems, and greater variation of AXI traffic than
hardware-only based verification.

Hardware-only based AXI IP verification requires full synthesis and Place and Route
(PAR) time per debug cycle, and the visibility of signals from an AXI ChipScope monitor is
more limited than in a simulation domain. The potential complexity of AXI4 traffic even in
a relatively typical system makes hardware-only verification very expensive.

Skipping
Simulation-based
AXI IP Verification
is Highly
Discouraged

However, if you must rely on hardware-only AXI IP verification, it is recommended that
the AXI Interconnect be configured as simply as possible.

For example, use SASD (which limits issuance/acceptance to 1), and minimize the use of
converter bank functions (size conversion, clock conversion, data path FIFOs, and so
forth). Register slices can also be enabled for hardware-only verification because register
slices acts as a filter for traffic patterns that can insulate the system from some protocol
violations.

Enable AXI ChipScope monitors and hardware protocol checkers at strategic points in the
system when performing hardware-only verification.

http://www.xilinx.com

106 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Chapter 5: AXI System Optimization: Tips and Hints

Using Base System Builder Without Analyzing and Optimizing Output
Base System Builder (BSB) provides a starting point for a functional AXI system that can
run on an evaluation board or be used to begin a custom board based design. However, the
system produced by BSB is a point solution within a broad solution space that AXI IP can
offer.

BSB offers a basic choice between an area- or throughput-optimized design to establish a
baseline architecture for the system.

Optimize, Adapt, and
Transform BSB
Output

The AXI system output from BSB should still be further adapted, optimized, and
incrementally transformed to fit the desired end application using the techniques
described in AXI System Optimization, page 91. Failure to tune the output of BSB to meet
the specific requirements of an application could result in poor quality of results and low
performance.

The architecture and optimizations necessary for a good AXI IP-based solution can differ
greatly from that of an IBM CoreConnect™ or a Xilinx MPMC-based system. The output
from BSB for AXI systems might not be designed with the same type of system architecture
as was output from BSB for CoreConnect or MPMC based systems. The output from BSB
for AXI systems must be significantly modified to match similar area, performance, and
features tradeoffs as a CoreConnect or an MPMC system created by BSB.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 107
UG761 (v13.4) January 18, 2012

Appendix A

AXI Adoption Summary

This appendix provides a summary of protocol signals adopted by Xilinx® in the AXI4 and
AXI-Lite, and AXI4-Stream interface protocol IP. Consult the AXI specifications (available
at www.amba.com) for complete descriptions of each of these signals.

AXI4 and AXI4-Lite Signals

Global Signals
Table A-1 lists the Global AXI signals.

AXI4 and AXI4-Lite Write Address Channel Signals

Table A-2 lists the Write Address Channel signals.

Note: A read-only master or slave interface omits the entire write address channel.

Table A-1: Global AXI Signals

Signal AXI4 AXI4-Lite

ACLK Clock source.

ARESETN Global reset source, active-Low. This signal is not present on the interface when a reset source (of either
polarity) is taken from another signal available to the IP. Xilinx IP generally must deassert VALID
outputs within 8 cycles of reset assertion, and generally require a reset pulse-width of 16 or more clock
cycles of the slowest clock.
Some Xilinx IP might document that they can accept ARESETN asserted for fewer than 16 cycles. For
example, DSP IP require ARESETN asserted for a minimum of 2 cycles on their AXI4-Stream interfaces.

Table A-2: Write Address Channel Signals

Signal AXI4 AXI4-Lite

AWID Fully supported.
Masters need only output the set of ID bits that it varies
(if any) to indicate re-orderable transaction threads.
Single-threaded master interfaces may omit this signal. Masters do not need to
output the constant portion that comprises the Master ID, as this is appended by the
AXI Interconnect.

Signal not present.

AWADDR Fully supported.
Width 32 bits, or larger as needed. High-order bits outside the native address range of a slave are ignored
(trimmed), by an end-point slave, which could result in address aliasing within the slave.

Note: EDK supports 32-bit address only.

http://www.xilinx.com
www.amba.com

108 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix A: AXI Adoption Summary

AXI4 and AXI4-Lite Write Data Channel Signals
Table A-3 lists the Write Data Channel signals.

Note: A read-only master or slave interface omits the entire Write Data Channel.

AWLEN Fully supported.
Support bursts:
• Up to 256 beats for incrementing (INCR).
• 16 beats for WRAP.

Signal not present.

AWSIZE Transfer width 8 to 1024 bits supported.
Use of narrow bursts where AWSIZE is less than the native data width is not
recommended.

Signal not present.

AWBURST INCR and WRAP fully supported.
FIXED bursts are not recommended.
FIXED bursts result in protocol compliant handshakes, but effect of FIXED transfer
can be aliased to INCR or undefined.

Signal not present.

AWLOCK Exclusive access support not implemented in endpoint Xilinx IP.
Infrastructure IP will pass exclusive access bit across a system.

Signal not present.

AWCACHE 0011 value recommended.
Xilinx IP generally ignores (as slaves) or generates
(as masters) transactions as Normal, Non-cacheable, Modifiable, and Bufferable.
Infrastructure IP will pass Cache bits across a system.

AWPROT 000 value recommended.
Xilinx IP generally ignores (as slaves) or generates transactions (as masters)
with Normal, Secure, and Data attributes.
Infrastructure IP passes Protection bits across a system.

AWQOS Not implemented in Xilinx Endpoint IP.
Infrastructure IP passes QoS bit across a system.

Signal not present.

AWREGION Can be implemented in Xilinx Endpoint slave IP.
Not present on master IP.
Generated by AXI Interconnect using corresponding address decoder range
settings.

Signal not present.

AWUSER Generally, not implemented in Xilinx endpoint IP.
Infrastructure IP passes USER bits across a system.

Signal not present.

AWVALID Fully supported.

AWREADY Fully supported.

Table A-2: Write Address Channel Signals (Cont’d)

Signal AXI4 AXI4-Lite

Table A-3: Write Data Channel Signals

Signal AXI4 AXI4-Lite

WDATA Native width 32 to 1024 bits supported. 32-bit width supported.
64-bit AXI4-Lite native data width is not
currently supported

WSTRB Fully supported. Slaves interface can elect to ignore WSTRB
(assume all bytes valid).

WLAST Fully supported. Signal not present.

WUSER Generally, not implemented in Xilinx endpoint IP.
Infrastructure IP will pass USER bits across a system.

Signal not present.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 109
UG761 (v13.4) January 18, 2012

AXI4 and AXI4-Lite Signals

AXI4 and AXI4-Lite Write Response Channel Signals
Table A-4 lists the Write Response Channel signals.

Note: A read-only master or slave interface omits the entire write response channel.

AXI4 and AXI4-Lite Read Address Channel Signals
Table A-5 lists the Read Address Channel signals.

Note: A write-only master or slave interface omits the entire read address channel.

WVALID Fully supported.

WREADY Fully supported.

Table A-3: Write Data Channel Signals (Cont’d)

Signal AXI4 AXI4-Lite

Table A-4: Write Response Channel Signals

Signal AXI4 AXI4-Lite

BID Fully supported.
See AWID for more information.

Signal not present.

BRESP Fully supported. EXOKAY value not supported by specification.

BUSER Generally, not implemented in Xilinx endpoint IP.
Infrastructure IP will pass USER bits across a system.

Signal not present.

BVALID Fully supported.

BREADY Fully supported.

Table A-5: Read Address Channel Signals

Signal AXI4 AXI4-Lite

ARID Fully supported.
Masters need only output the set of ID bits that it varies (if any) to
indicate re-orderable transaction threads. Single-threaded master
interfaces may omit this signal. Masters do not need to output the
constant portion that comprises the “Master ID”, as this is appended
by the AXI Interconnect.

Signal not present.

ARADDR Fully supported.
Width 32 bits, or larger as needed. High-order bits outside the native address range of a slave are ignored
(trimmed) by an end-point slave, which could result in address aliasing within the slave.

Note: EDK supports 32-bit address only.

ARLEN INCR and WRAP fully supported.
FIXED bursts are not recommended. FIXED bursts result in
protocol compliant handshakes, but effect of FIXED transfer may be
aliased to INCR or undefined.

Signal not present.

ARSIZE Transfer width 8 to 1024 bits supported.
Use of narrow bursts where ARSIZE is less than the native data
width is not recommended.

Signal not present.

ARBURST INCR and WRAP fully supported.
FIXED bursts are not recommended. FIXED bursts result in
protocol compliant handshakes, but effect of FIXED transfer can be
aliased to INCR or undefined.

Signal not present.

http://www.xilinx.com

110 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix A: AXI Adoption Summary

AXI4 and AXI4-Lite Read Data Channel Signals
Table A-6 lists the Read Data Channel signals.

Note: A read-only Master or slave interface omits the entire read data channel.

ARLOCK Exclusive access support not implemented in Endpoint Xilinx IP.
Infrastructure IP passes exclusive access bit across a system.

Signal not present.

ARCACHE 0011 value recommended.
Xilinx IP generally ignores (as slaves) or generates (as masters) transactions with
Normal, Non-cacheable, Modifiable, and Bufferable.
Infrastructure IP will pass Cache bits across a system.

ARPROT 000 value recommended.
Xilinx IP generally ignore (as slaves) or generate transactions (as masters)
with Normal, Secure, and Data attributes.
Infrastructure IP passes Protection bits across a system.

ARQOS Not implemented in Xilinx Endpoint IP.
Infrastructure IP passes QoS bit across a system.

Signal not present.

ARREGION Can be implemented in Xilinx Endpoint Slave IP.
Not present on master IP.
Generated by AXI Interconnect using corresponding address
decoder range settings.

Signal not present.

ARUSER Generally, not implemented in Xilinx Endpoint IP.
Infrastructure IP passes User bits across a system.

Signal not present.

ARVALID Fully supported.

ARREADY Fully supported.

Table A-5: Read Address Channel Signals (Cont’d)

Signal AXI4 AXI4-Lite

Table A-6: Read Data Channel Signals

Signal AXI4 AXI4-Lite

RID Fully supported.
See ARID for more information.

Signal not present.

RDATA Native width 32 to 1024 bits supported. 32-bit width supported.
64-bit AXI4-Lite native data width is not
supported.

RRESP Fully supported. EXOKAY value not supported by specification.

RLAST Fully supported. Signal not present.

RUSER Generally, not implemented in Xilinx Endpoint IP.
Infrastructure IP will pass User bits across a system.

Signal not present.

RVALID Fully supported.

RREADY Fully supported.

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 111
UG761 (v13.4) January 18, 2012

AXI4-Stream Signal Summary

AXI4-Stream Signal Summary
Table A-7 lists the AXI4-Stream signal summary.

Table A-7: AXI4-Stream Signal Summary

Signal Optional Default
(All Bits) Description

TVALID No N/A No change.

TREADY Yes 1 No change

TDATA Yes 0 No change.
Xilinx AXI IP convention:
8 through 4096 bit widths are used by Xilinx AXI IP (establishes a testing limit).

TSTRB Yes Same as
TKEEP
else 1

No change. Generally, the usage of TSTRB is to encode Sparse Streams. TSTRB
should not be used only to encode packet remainders.

TKEEP Yes 1 In Xilinx IP, there is only a limited use of Null Bytes to encode the remainders bytes
at the end of packetized streams.
TKEEP is not used in Xilinx endpoint IP for leading or intermediate null bytes in the
middle of a stream.

TLAST Yes 0 Indicates the last data beat of a packet.
Omission of TLAST implies a continuous, non-packetized stream.

TID Yes 0 No change.
Xilinx AXI IP convention:
Only 1-32 bit widths are used by Xilinx AXI IP (establishes a testing limit).

TDEST Yes 0 No change
Xilinx AXI IP convention:
Only 1-32 bit widths are used by Xilinx AXI IP (establishes a testing limit).

TUSER Yes 0 No change
Xilinx AXI IP convention:
Only 1-4096 bit widths are used by Xilinx AXI IP (establishes a testing limit).

http://www.xilinx.com

112 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix A: AXI Adoption Summary

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 113
UG761 (v13.4) January 18, 2012

Appendix B

AXI Terminology

Table B-1: AXI Terminology

Term Type Description Usage

AXI Generic The generic term for all implemented AXI protocol
interfaces.

General description.

AXI4 Memory mapped block
transfers

Addressed interface bursts up to 256 data beats. Embedded and
memory cores.
Examples: MIG, block
Ram, EDK PCIe
Bridge, FIFO.

AXI4-Lite Control Register Subset

32-bit data, memory mapped, lightweight, single data
beat transfers only.

Management registers.
Examples: Interrupt
Controller, UART Lite,
IIC Bus Interface.

AXI4-Stream Streaming Data Subset
Unidirectional links modeled after a single write channel.
Unlimited burst length.

Used in DSP, Video,
and communication
applications.

Interface
AXI4
AXI4-Lite
AXI4-Stream

Collection of one or more channels that expose an IP
core function, connecting a master to a slave.
Each IP can have multiple interfaces.

All.

Channel
AXI4
AXI4-Lite
AXI4-Stream

Independent collection of AXI signals associated with a
VALID signal

All.

Bus Generic Multiple-bit signal
(Not an interface or a channel).

All.

Transaction

AXI4-Stream
Complete communication operation across a channel,
composed of one or more transfers. A complete action.

Used in DSP, Video,
and communication
applications.

AXI4
AXI4-Lite

Complete collection of related read or write
communication operations across address, data, and
response channels, composed of one or more transfers.
A complete read or write request.

Embedded and
memory cores.
Management registers.

Transfer
AXI4
AXI4-Lite
AXI4-Stream

Single clock cycle where information is communicated,
qualified by a VALID hand-shake. Data beat

All.

Burst
AXI4
AXI4-Lite
AXI4-Stream

Transaction that consists of more than one transfer. All.

master
AXI4
AXI4-Lite
AXI4-Stream

An IP or device (or one of multiple interfaces on an IP)
that generates AXI transactions out from the IP onto the
wires connecting to a slave IP.

All.

slave
AXI4
AXI4-Lite
AXI4-Stream

An IP or device (or one of multiple interfaces on an IP)
that receives and responds to AXI transactions coming in
to the IP from the wires connecting to a master IP.

All.

http://www.xilinx.com

114 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix B: AXI Terminology

master
interface
(generic)

AXI4
AXI4-Lite
AXI4-Stream

An interface of an IP or module that generates out-bound
AXI transactions and thus is the initiator (source) of an
AXI transfer.

All.

slave interface
(generic)

AXI4
AXI4-Lite
AXI4-Stream

An interface of an IP or module that receives in-bound
AXI transactions and becomes the target (destination) of
an AXI transfer.

All.

SI
AXI4
AXI4-Lite

AXI Interconnect Slave Interface:
• For XPS flow, Vectored AXI slave interface receiving in-

bound AXI transactions from all connected master
devices.

• For CORE Generator tool flow, one of multiple slave
interfaces connecting to one master device.

EDK.

MI
AXI4
AXI4-Lite

AXI Interconnect Master Interface:
• For XPS flow, Vectored AXI master interface generating

out-bound AXI transactions to all connected slave
devices.

• For CORE Generator tool flow, one master interface
connecting to one slave device.

EDK.

SI slot
AXI4
AXI4-Lite

Slave Interface Slot: A slice of the slave Interface vector
signals of the Interconnect that connect to a single
master IP.

EDK.

MI slot
AXI4
AXI4-Lite

Master Interface Slot: A slice of the Master Interface
vector signals of the Interconnect that connect to a single
Master Interface slave IP.

EDK.

SI-side
AXI4
AXI4-Lite

Refers to a module interface closer to the SI side of the
Interconnect.

All.

MI-side
AXI4
AXI4-Lite

Refers to a module interface closer to the MI side of the
Interconnect.

All.

upsizer AXI4
AXI4-Lite
AXI4-Stream

Data width conversion function in which the data path
width gets wider when moving in the direction from the
slave interface toward the master interface (regardless of
write/read direction).

All.

downsizer AXI4
AXI4-Lite
AXI4-Stream

Data width conversion function in which the data path
width gets narrower when moving in the direction from
the slave interface toward the master interface
(regardless of write/read direction).

All.

SAMD Topology Shared-Address, Multiple-Data: Configuration of AXI
Interconnect where data transfers can occur
independently and concurrently between different master
and slave devices.

All.

SASD Topology Shared-Address, Shared-Data: Configuration of AXI
Interconnect where a single read and write pathway is
implemented.

All.

Shared-Access Topology Configuration of AXI Interconnect based on SASD
topology where only one transaction is issued at a time to
minimize resources.

EDK.

Crossbar Topology Configuration of AXI Interconnect based on SAMD
topology where data pathways are implemented
according to sparse connectivity between master and
slave devices.

All.

Crossbar Structural Module at the center of the AXI Interconnect that routes
address, data and response channel transfers between
various SI slots and MI slots.

All.

Table B-1: AXI Terminology (Cont’d)

Term Type Description Usage

http://www.xilinx.com

AXI Reference Guide www.xilinx.com 115
UG761 (v13.4) January 18, 2012

Appendix C
Additional Resources

Additional reference documentation:

• ARM AMBA AXI Protocol v2.0 Specification

• AMBA4 AXI4-Stream Protocol v1.0

See the Introduction, page 3 for instructions on how to download the ARM® AMBA® AXI
specification from http://www.amba.com.

Additionally, this document references documents located at the following Xilinx website:
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm

• Multi-port Memory Controller (MPMC) Data Sheet (DS643)

• AXI Interconnect IP (DS768)

• AXI-To-AXI Connector IP Data Sheet (DS803)

• AXI External Master Connector (DS804)

• AXI External Slave Connector (DS805)

• AXI Bus Functional Models (DS824)

• AXI Data Mover Product Guide (PS022)

• LogiCORE IP FIFO Generator, (DS317)

Xilinx Documentation
• Bridging Xilinx Streaming Video Interface with AXI4-Stream Protocol (XAPP521):

http://www.xilinx.com/support/documentation/application_notes/xapp521.pdf

• AXI Multi-Ported Memory Controller Application Note, (XAPP739):
http://www.xilinx.com/support/documentation/application_notes/xapp739_axi_mpmc.pdf

• Designing High-Performance Video Systems with the AXI Interconnect, (XAPP740):
http://www.xilinx.com/support/documentation/application_notes/xapp740_axi_video.pdf

• AXI Bus Functional Models User Guide (UG783): http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_4/ug783_axi_bfm.pdf

• MicroBlaze Processor Reference Guide (UG081) : http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_4/mb_ref_guide.pdf

• ISE Design Suite: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/iil.pdf

• ISE Design Suite: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf

• Video Demonstrations: http://www.xilinx.com/design

• Xilinx Answer Database: http://www.xilinx.com/support/mysupport.htm

• Xilinx Glossary:
http://www.xilinx.com/support/documentation/sw_manuals/glossary

• EDK website: http://www.xilinx.com/tools/embedded.htm

• CORE Generator® tool: http://www.xilinx.com/tools/coregen.htm

http://www.xilinx.com/support/documentation/application_notes/xapp740_axi_video.pdf
http://www.amba.com
http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp739_axi_mpmc.pdf
http://www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=mpmc.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=ds768_axi_interconnect.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=ds803_axi2axi_connector.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=ds804_axi_ext_master_conn.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=ug783_axi_bfm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.4&topic=sw+manuals&sub=ug783_axi_bfm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;13.4;d=ds805_axi_ext_slave_conn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=ds824_axi_bfm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_datamover/v3_00_a/pg022_axi_datamover.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp521.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;v=13.4;d=ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v8_3/fifo_generator_ds317.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=edk
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;t=install+guide;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;t=install+guide;d=irn.pdf
http://www.xilinx.com/design
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary

116 www.xilinx.com AXI Reference Guide
UG761 (v13.4) January 18, 2012

Appendix C: Additional Resources

• Memory Control:
http://www.xilinx.com/products/technology/memory-solutions/index.htm

• System Generator: http://www.xilinx.com/tools/sysgen.htm

• Local-Link:
http://www.xilinx.com/products/design_resources/conn_central/locallink_member/sp06.pdf

• Targeted Designs: http://www.xilinx.com/products/targeted_design_platforms.htm

Answer Record: http://www.xilinx.com/support/answers/37425.htm

Third Party Documents
International Telecommunications Union (ITU): ITU-R BT.1614:
http://engineers.ihs.com/document/abstract/SUCFEBAAAAAAAAAA

HDTV Standards and Practices for Digital Broadcasting: SMTPE 352M-2009

http://engineers.ihs.com/document/abstract/SUCFEBAAAAAAAAAA
http://www.xilinx.com/products/technology/memory-solutions/index.htm
http://www.xilinx.com
http://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com/products/design_resources/conn_central/locallink_member/sp06.pdf
http://www.xilinx.com/products/targeted_design_platforms.htm
http://www.xilinx.com/products/targeted_design_platforms.htm
http://www.xilinx.com/support/answers/37425.htm

	AXI Reference Guide
	Revision History
	Table of Contents
	Introducing AXI for Xilinx System Development
	Introduction
	What is AXI?
	Summary of AXI4 Benefits

	How AXI Works
	IP Interoperability
	About Data Interpretation
	About IP Compatibility
	Infrastructure IP
	Memory Mapped Protocols
	AXI4-Stream Protocol
	Combining AXI4-Stream and Memory Mapped Protocols

	What AXI Protocols Replace
	Targeted Reference Designs

	AXI Support in Xilinx Tools and IP
	AXI Development Support in Xilinx Design Tools
	Xilinx AXI Infrastructure IP

	AXI Feature Adoption in Xilinx FPGAs
	Memory Mapped IP Feature Adoption and Support
	AXI4-Stream Adoption and Support
	AXI4-Stream Signals

	DSP and Wireless IP: AXI Feature Adoption
	Video IP: AXI Feature Adoption
	Video IP Using AXI4-Stream Interface
	Signaling Protocol

	Migrating to Xilinx AXI Protocols
	Introduction
	The AXI To PLBv.46 Bridge
	Migrating Local-Link to AXI4-Stream
	Using System Generator for Migrating IP
	Migrating a Fast Simplex Link to AXI4-Stream
	Migrating HDL Designs to use DSP IP with AXI4-Stream
	Migrating Designs from XSVI to Video over AXI4-Stream
	Software Tool Considerations for AXI Migration (Endian Swap)
	General Guidelines for Migrating Big-to-Little Endian
	Data Types and Endianness
	High End Verification Solutions

	AXI System Optimization: Tips and Hints
	AXI System Optimization
	Size/Area Optimization Guidelines
	Timing / Fmax Optimization Guidelines
	Latency Optimization Guidelines
	Ease of Use and Debug Optimization Guidelines

	AXI4-based Multi-Ported Memory Controller: AXI4 System Optimization Example
	AXI4 MPMC Overview
	Initial Memory Controller Configuration
	Initial AXI Interconnect Configuration
	AXI4 Master Configuration
	Refining the AXI Interconnect Configuration
	Adding a Processor to the AXI MPMC System
	Additional Potential Optimizations for AXI MPMC
	Debug and Analysis: Using AXI ChipScope Monitor and AXI Hardware Protocol Checkers
	Floorplanning

	Common Pitfalls Leading to AXI Systems of Poor Quality Results
	Over-Sizing a Memory Controller
	Incorrect Core Data Width or Core Clock for AXI Interconnect
	Overuse of Register Slices
	Skipping Simulation-Based Verification of New IP
	Using Base System Builder Without Analyzing and Optimizing Output

	AXI Adoption Summary
	AXI4 and AXI4-Lite Signals
	Global Signals
	AXI4 and AXI4-Lite Write Address Channel Signals
	AXI4 and AXI4-Lite Write Data Channel Signals
	AXI4 and AXI4-Lite Write Response Channel Signals
	AXI4 and AXI4-Lite Read Address Channel Signals
	AXI4 and AXI4-Lite Read Data Channel Signals

	AXI4-Stream Signal Summary

	AXI Terminology
	Additional Resources
	Xilinx Documentation
	Third Party Documents

