Centering target coordinates
 (attempts to...)

Alessandra Filippi
June 18, 2018

2016 data @ 0.5 mm global alignment

- Start version: internal alignment OK , version without global alignment, target at ($0,0,0$)
- Look at unconstrained z vertex coordinate for Moller tracks
- Center the z coordinate of the vertex
- Check consistency
- Apply global alignment to center d 0 and zO (old procedure)
- Check consistency

Moller sample, internal alignment ok, no global alignment

- Unconstrained vertex distributions
- X coordinate
- $\mu=-796 \mu \mathrm{~m}$
- $\sigma=0.4 \mathrm{~mm}$
- Y coordinate
- $\mu=-0.122$
$\mu \mathrm{m}$
- $\sigma=0.21 \mathrm{~mm}$
- Z coordinate
- $\mu=-1.04 \mathrm{~mm}$
- $\sigma=3.9 \mathrm{~mm}$
- Reconstruction with (0,0,0) as beamspot

All data, no global alignment, impact parameters \& residuals

- residuals for internal alignment OK
- Impact parameters are displaced (OK, no global alignment is applied

All data, no global alignment, impact parameters \& residuals: Moller tracks only

- residuals for internal alignment OK
- Impact parameters are displaced (OK, no global alignment is applied) and different from those found for all tracks

Moller sample, internal alignment ok, $\mathrm{z}_{\text {tar }}$ moved, no global alignment

Moller Vertex unc Y

Moller Vertex unc XY

- Unconstrained vertex distributions
- X coordinate
- $\mu=-800 \mu \mathrm{~m}$
- $\sigma=0.4 \mathrm{~mm}$
- Y coordinate
- $\mu=-0.120 \mu \mathrm{~m}$
- $\sigma=0.21 \mathrm{~mm}$
- Z coordinate
- $\mu=-0.03 \mathrm{~mm}$
- $\sigma=3.9 \mathrm{~mm}$
- Reconstruction with $(0,0,0)$ as beamspot

All data, no global alignment, z moved: impact parameters

- residuals for internal alignment start jumping: a new internal alignment is needed
- Impact parameters are displaced (OK)

Moller sample, internal alignment ok, $z_{\text {tar }}$ moved -> move $d_{0} \& z_{0}$ to 0

- Usual recipe for d0 and z0 (t\&b) global alignment
- Use the values obtained when $\mathrm{z}=-$ 1.022 mm (first step, slide \#4)
- These d0 and z0 impact parameters are obtained with ALL tracks (no topological selection)
- Reconstruction with (0,0,0) as beamspot
- Test with reduced statistics

If (x, y) are centered, z flies away again...

All data, z moved + global alignment: impact parameters \& residuals

- residuals for internal alignment: bad
- Impact parameters could be converging better (but a second iteration would be enough to fix this)

Moller sample, new internal

alignment, $\mathrm{z}_{\mathrm{tar}}$ moved + global align.

- New alignment: sensors 1-2-3 top/bottom tu released
- Unconstrained vertex distributions
- X coordinate
- $\mu=160 \mu \mathrm{~m}$
- $\sigma=0.4 \mathrm{~mm}$
- Y coordinate
- $\mu=-0.020 \mu \mathrm{~m}$
- $\sigma=0.25 \mathrm{~mm}$
- Z coordinate
- $\mu=-0.02 \mathrm{~mm}$
- $\sigma=4.09 \mathrm{~mm}$
- Reconstruction with $(0,0,0)$ as beamspot
- Test with reduced statistics

All data, new alignment, z moved + global alignment

- residuals for internal alignment: OK
- Impact parameters could be converging better (they move to opposite parts)

Next steps

- Issues to be understood:
- Applying the zTar offset as an additive parameter to all sensors (at the level of mp) offsets disrupts the internal alignment
- It should be a simple rigid translation... but it is not
- needs to be checked: error? sign flip not properly considered? some rotation? Something else more subtle?
- The d0, z0 offsets found for all tracks are different from those found from the Moller sample only: which one to choose?
- In this situation, a new internal alignment version is required
- Adjust the first three layers
- Repeat the procedure until it converges (at the moment, it doesn't... Moller vertex coordinates swip away)
- Elastic momentum peak calibration improves

