Identifying TeV source candidates among <i>Fermi</i> -LAT unclassified blazars	
G. Chiaro, 1 M. Meyer, 2 M. Di Mauro, 3 D. Salvetti, 1 G. La Mura, 4 and D. J. Thompson	13
¹ Institute of Space Astrophysics & Cosmic Physics, INAF	
Via Bassini 15, I-20133 Milano Italy	
² Kavli Institute for Particle Astrophysics and Cosmology, Dpt. of Physics, SLAC,	
Stanford University, Stanford, California 94305, USA	
³ NASA Goddard Space Flight Center	
Greenbelt, MD 20771 USA	
$^{4}Lab.$ de Instrumentacao e Fisica Experimental de Particulas. LIP	
Av. Gama Pinto 2, Lisboa, Portugal	
(Received March, 2019; Revised April, 2019)	
Submitted to ApJ	
ABSTRACT	
Blazars and in particular the subclass of high synchrotron peaked Active Galactic Nuclei are	among
he main targets for the present generation of Imaging Atmospheric Cherenkov Telescopes (I.	ACTs)
and will remain of great importance for very high-energy γ -ray science in the era of the Che	renkov
Telescope Array (CTA). Observations by IACTs, which have small fields of view, are limited	by ob
serving conditions; therefore, it is important to select the most promising targets in order t	o save
observation time and consequently to increase the number of detections. The aim of this pape	er is to
search for unclassified γ -ray blazated at are likely detectable with IACTs or CTA, using an ar	rtificia
neural network algorithm and updated analysis of <i>Fermi</i> Large Area Telescope data. We for	and 80
y-ray sources, and for these sources we study their light curves and, for the highest-confidence	candi
dates, potential detectability by IACTs and/or CTA. Follow-up observations of our source can	lidate
could significantly increase the current TeV source population sample and could ultimately c	onfirm
the efficiency of our algorithm to select TeV sources. It could also lead to a revision of the pre-	dicted
number of sources that will be detected in the CTA extragalactic survey.	
<i>Keywords:</i> gamma rays — blazars — catalogs — surveys	

1. INTRODUCTION

Blazars, some of the most powerful Active Galactic Nuclei (AGNs), have a relativistic jet pointing toward the observer (e.g., Abdo et al. 2010; Massaro et al. 2015) and show rapid variability and high optical and radio polarization. Such objects are the most numerous class of extragalactic sources detected by TeV telescopes, the most sensitive of which are the Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the existing MAGIC¹, H.E.S.S.², and VERITAS³ facilities and the upcoming Cherenkov Telescope Array (CTA)⁴. Despite their high sensitivity, however, observations by current IACTs are limited by their small fields of view, weather conditions, the need for relatively dark night skies, and by a high background that requires fairly long observations. A source with a flux of ~1% of the Crab nebula flux requires around 50 hours of observation time. IACTs typically take data for only about 1200 hours per year (De Naurois et al. 2015). Those constraints provide a strong incentive to identify likely targets for IACT observations.

Corresponding author: Graziano Chiaro graziano.chiaro@inaf.it

¹ https://magic.mpp.mpg.de/

 $^{^2~{\}rm https://www.mpi-hd.mpg.de/hfm/HESS/}$

³ https://veritas.sao.arizona.edu/

⁴ https://www.cta-observatory.org/

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

CHIARO ET AL.

The all-sky observations with the Large Area Telescope (LAT) on the *Fermi Gamma-ray Space Telescope (Fermi)* (Atwood et al. 2009) at GeV energies offer opportunities to find such targets. An example is the Third Catalog of Hard *Fermi*-LAT Sources (3FHL: Ajello et al. 2017), which reports the locations and spectra of sources significantly detected in the 10 GeV - 2 TeV energy range during the first 7 years of the *Fermi* mission. From the 3FHL it is possible to select TeV candidates by γ -ray flux and spectral index.

An alternative approach to searching for TeV candidates is to find objects belonging to a class of sources likely to be seen at TeV energies. In the case of blazars, this can be done by identifying the pobjects whose synchrotron emission peaks at high frequencies. Blazar Spectral Energy Distributions (SEDs) show be ad humps in a νf_{ν} representation. The low-energy hump is attributed to synchrotron radiation, and the high-energy one is usually thought to be due to inverse Compton radiation (IC) (e.g. Ghisellini 2013). Based on the position of the peak of the synchrotron hump (ν_{peak}^{S}) in the SED, blazars are divided into three subclasses: low-synchrotron-peaked (LSP, with $\nu_{peak}^{S} \leq 10^{14}$ Hz), intermediate-synchrotron-peaked (ISP, with 10^{14} Hz $< \nu_{peak}^{S} \leq 10^{15}$ Hz) and high-synchrotron-peaked (HSP, with $\nu_{peak}^{S} > 10^{15}$ Hz) (Abdo et al. 2010). HSPs, primarily BL Lac objects, represent the most numerous class of extragalactic TeV-energy sources. The TeVCat⁵ is an online, interactive catalog for very-high-energy (VHE energies, E > 100 GeV) γ -ray astronomy (Horan et al. 2008). This catalog reports 223 TeV sources, where 51 of them are HSPs and only 10 are LSP/ISP flat-spectrum radio quasars (FSRQs).⁶ An example of searching out HSP candidates is the second *WISE* High Synchrotron Peak Catalog (2WHSP) (Chang et al. 2017), which is an independent list of **HSP** candidates based on the multi-frequency analysis of γ -ray source candidates away from the Galactic Plane.

The present search for TeV HSP source candidates is a third approach, using a two-step method: (1) We use γ -ray variability information to search out potential HSPs among the unclassified *Fermi*-LAT sources; and (2) We analyze γ -ray spectra of these sources using more *Fermi*-LAT data than are a spit ble in published catalogs. The starting point is the third *Fermi*-LAT all-sky catalog of sources detected at energies between 100 MeV and 300 GeV (3FGL: Acero et al. 2015). The 3FGL catalog lists 3033 γ -ray sources, of which 1745 are AGNs, mostly BL Lacs and FSRQs, and includes γ -ray source locations, energy spectra, variability information on monthly time scales, and likely associations with objects seen at other wavelengths. In this catalog 573 sources are listed as blazars of uncertain type (BCUs) and 1010 objects are unassociated wit plausible counterpart at other wavelengths (UCSs).⁷

Although BCUs and UCSs often lack optical spectra and sufficient information for a rigorous classification, statistical methods such as the Artificial Neural Network (ANN) algorithm can potentially provide classifications of these sources (e.g., Chiaro et al. 2016; Saz Parkinson et al. 2016; Salvetti et al. 2017; Lefaucheur et al. 2017). In particular, Saz Parkinson et al. (2016) found 559 of the UCS sources have characteristics similar to those of AGN. These UCS_{agns} are combined with the original 573 BCUs from the 3FGL catalog to provide the targets for our search for HSP/TeV candidates. The paper is organized as follows: in Sect. 2 we present the machine learning method used in this study; in Sect. 3 we describe the selection of HSP candidates among the uncertain 3FGL objects; and in Sect. 4 we discuss the results of a dedicated *Fermi*-LAT analysis of the sources found analyzing 104 months of data. In Sect. 5 we examine the detectability of the targets by the present generation of IACTs and CTA. In Sect. 6 we discuss the results of this study.

2. THE ANN SEARCH METHOD

The starting point for selecting HSP candidates is the ANN method previously applied to *Fermi*-LAT sources to distinguish FSRQ-like sources from those with BL Lac characteristics (Chiaro et al. 2016; Salvetti et al. 2017). This approach uses the two-layer-perceptron ANN technique (Gish 1990), which is probably the most widely used architecture for practical applications of neural networks. We applied the algorithm to the three synchrotron peak subclasses as classified in the Third Catalog of Active Galactic Nuclei detected by the *Fermi* LAT (3LAC: Ackermann et al. 2015) in order to train it to distinguish each source class on the basis of their monthly $E > 100 \text{ MeV } \gamma$ -ray flux values. The algorithm computes a likelihood value arranged to have two possibilities: class A or class B, with a likelihood (L) assigned to each analyzed source so the likelihoods to belong to either of the two classes are related by $L_A = 1 - L_B$. In this way, the greater the value of L_A , the greater the likelihood that the source is a class A candidate. In this case, the Likelihood applies to the source having HSP characteristics, L_{HSP} .

⁵ http://tevcat.uchicago.edu/

 $^{^{6}}$ The rest of the sources in TeVC at are Galactic sources or of unidentified nature.

⁷ A preliminary version of the 4FGL catalog is available at https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/, but it does not include the variability information needed for this analysis.

Figure 1. ANN likelihood to be HSP candidates of 3FGL BCUs (left) and UCS_{agn} (right). Vertical blue and steel blue lines indicate the classification thresholds of our ANN algorithm to identify sources with a $L_{HSP} > 0.8$ and VHC candidates with $L_{HSP} > 0.89$.

Repeating the analysis of Chiaro et al. (2016), we considered 289 HSPs and 824 non-HSP objects classified in the 3LAC catalog. Maintaining the same ratio as in the catalog, that is, one third HSPs and two thirds non-HSP sources, we randomly mixed the sample and divided it into 3 subsamples: training, validation, and testing. The training sample is used to optimize the network. The validation sample is used to avoid over-fitting. The testing sample is independent both of the training and validation ones and was used to monitor the accuracy of the network. Although the random sampling resulted in a different training set from the previous analysis, the results were the same: for $L_{HSP} > 0.8$, 75% of the sources have characteristics of HSPs, while for $L_{HSP} > 0.89$, we expect 90% of the sources to be HSP-like.

3. IDENTIFYING HSP CANDIDATES

We applied the ANN HSP algorithm to the 573 BCUs and the 559 UCS_{agn} of our sample. The resulting likelihood distributions show, as expected, a peak at $L_{HSP} = 0.0$ due to the non-HSP populations (ISP and LSP), which are much more numerous than HSPs (Fig. 1). The lack of a peak at $L_{HSP} = 1.0$ indicates that the ANN network was not able to separate HSPs cleanly, but for the purpose of selecting candidates for additional analysis we are primarily interested in finding a high fraction of the sources with the desired characteristics. Requiring the $L_{HSP} > 0.8$ value, we identified 48 BCU and 32 UCS_{agn} as HSP candidates. Applying the higher threshold value $L_{HSP} > 0.89$, we identified 11 BCUs and 5 UCS_{agn} as Very High Confidence (VHC) HSP candidates. Table 1 and Table 2 show the full lists of candidates, where the VHC sources are on the top of the list.

4. FERMI-LAT SPECTRAL ANALYSIS

We analyzed 104 months of *Fermi*-LAT Pass 8 (Atwood et al. 2013) data from 2008 August 4 to 2017 April 4, selecting γ -ray events in the energy range E = [0.1, 1000] GeV, passing standard data quality selection criteria, in order to find the γ -ray properties of our HSP candidates. We considered events belonging to the Pass 8 SOURCE event class and used the corresponding instrument response functions P8R2_SOURCE_V6, since we were interested in point source detection. We used the interstellar emission model (IEM) released with Pass 8 data (Acero et al. 2016) (i.e.,

109

110

111

112

113

114

115

116

117

118

119

120

121

122

129

CHIARO ET AL.

gll_iem_v06.fits). This is the model routinely used in Pass 8 analyses. We also included the standard template for the isotropic emission (iso_P8R2_S0URCE_V6_v06.txt)⁸.

We developed an analysis pipeline using FermiPy, a Python package that automates analyses with the Fermi Science Tools (Wood M. 2017)⁹. FermiPy includes tools that can 1) generate simulations of the γ -ray sky, 2) detect point sources, and 3) calculate the characteristics of their SEDs. For more details on FermiPy we refer to the Appendices of Ajello et al. (2017). The likelihood analysis works on a square region of interest (ROI). We used a $16^{\circ} \times 16^{\circ}$ ROI centered on the sources of our sample. We analyzed each ROI separately. In each ROI, we binned the data with a pixel size of 0.08° and 8 energy bins per decade. Our model includes the IEM, isotropic template and sources from the preliminary 8-year list¹⁰. We allowed the normalization and slopes of the IEM and isotropic templates to vary. We first relocalized the source of interest, and then we searched for new point sources with Test Statistic TS > 25, defined as twice the difference between the log-likelihood for the null hypothesis (no source) and the hypothesis of a source at the location. We apply a powe we we see for the sources in our sample. After this first step we calculate the SED of the source and we compute its lightcurve in order to determine whether the source is variable. The variability was estimated for each source by calculating the Test Statistic for variability (TS_{VAR}), defined as twice the difference between the log-likelihood for the null hypothesis of a variable flux.

In Table 3 and Table 4 we report the following parameters for the HSP candidates: the best fit and 1σ error of the position, the *TS* of detection, the pivot energy (i.e. energy at which error on differential flux is minimal), the spectral index found for a power-law SED shape, the flux and energy flux integrated between 100 MeV to 300 GeV. The spectral index parameter, if less than 2, can be a relevant indicator for an IC peak at TeV energies and therefore quite useful in selecting IACT or CTA candidates. The mean and rms of the spectral indexes of HSPs are 1.87 ± 0.20 while for LSPs and ISPs these are 2.21 ± 0.18 , 2.07 ± 0.20 respectively.

5. TEV CANDIDATES

In this section, we compare the extrapolated fluxes of these sources against the sensitivity of present IACTs and the 130 future CTA. We use the *Fermi*-LAT spectral shapes obtained in the previous section and focus further analysis on the 131 VHC candidates. In order to evaluate whether the VHC HSP candidates can realistically be observed with IACTs or 132 CTA, we must take into account the interaction of γ -rays with photons of the extragalactic background light (EBL). 133 The relevant part of the EBL spans the wavelength regime from ultraviolet to far-infrared wavelengths and mainly 134 consists of the integrated starlight emitted over the history of the Universe and starlight absorbed and re-emitted by 135 dust in galaxies (Hauser et al. 2001; Kashlinsky et al. 2005). During the propagation of γ rays through the EBL, the 136 electron-positron pairs produced via $\gamma \gamma \rightarrow e^+e^-$ leads to an attenuation of the initial γ -ray flux (Nikisov et al. 1962; 137 Gould et al. 1967; Dwek et al. 2013). To properly evaluate the absorption effect of the EBL it is necessary to know 138 the redshift of the analyzed γ -ray source. Since the redshifts of the selected VHC candidates are unknown, we 139 assume redshifts between z = 0 and z = 0.5, which are typical values of observed BL Lacs. We used these z140 values while recognizing that blazar redshift range is a very open and long standing debate. Some authors argue that 141 the BL Lacs without a redshift are likely much more distant than those with a measured one (e.g., Padovani et al. 142 2012), so it could be possible that some objects fall beyond the 0-0.5 redshift range. 143

Using the EBL model of Dominguez et al. (2011), we extrapolate the best-fit spectra obtained with the Fermi analysis 144 in Sec. 4 up to 10 TeV with the assumed redshift values. The results are shown in Fig. 2 and Fig. 3 where we compare 145 the extrapolated fluxes with the CTA sensitivity for 50 hours (5 hours) of observations as a solid (dashed) gray line. 146 The CTA sensitivity curves are available for the northern and southern array and for zenith angles, Z, of 20° and 40°. 147 We choose the sensitivity curve depending on the source declination δ assuming CTA site locations at 28.7° northern 148 latitude and 24.7° southern latitude. For $\delta > 58.7^{\circ}$, we choose the northern array with $Z = 40^{\circ}$, for $58.7^{\circ} \leq \delta < 2.7^{\circ}$ 149 the northern array with $Z = 20^{\circ}$, for $2.7 \ge Z \ge -54.7^{\circ}$ the southern array with $Z = 20^{\circ}$, and the southern array with 150 $Z = 40^{\circ}$ for $\delta < -54.7^{\circ}$.¹¹ The CTA sensitivity for 5 hours of observation is similar to that of currently operating 151 IACTs for 50 hours of observation, although the current IACTs have typically a higher threshold energy of $\geq 80 \,\text{GeV}$. 152 or a redshift of z = 0.5 most of the considered sources should still be detectable by currently operating IACTs and 153 ppear to be good candidates for detection with CTA. In Table 5, we report the maximum redshift values of the TeV 154

 $^{^{8} \ {\}rm For \ descriptions \ of \ these \ templates, \ see \ http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.}$

⁹ See http://fermipy.readthedocs.io/en/latest/.

¹⁰ https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/gll_psc_8year_v5.fit

¹¹ The sensitivity curves of the northern and southern array are available at www.cta-observatory.org

HUNTING IACT CANDIDATES

candidates $\frac{1}{1000}$ hat the sources are still detectable at 5 σ for 5- and 50-hour CTA observations. If no value is given, the source will not be significantly detected with the assumed observation time at any redshift.

157

169

155

156

6. CONCLUSIONS

Motivated by wishing to expand the sample of TeV sources, we applied a machine learning algorithm to variability 158 parameters of Fermi-LAT blazar-like sources without firm identifications combined with new analysis of the LAT data 159 for these sources. Follow-up work will necessitate additional multiwavelength studies, including finding redshifts for 160 most of the candidates and targeted observation by IACTs. We also recognize that this search is necessarily incomplete 161 because of the difficulty to distinguish the blazar subclasses by the γ -ray flux properties only. As already pointed 162 out by Ackermann et al. (2015), the γ -ray sources with unknown properties are generally fainter than the well-defined 163 classes. The fainter sources offer less of the variability information needed for the machine learning method, and 164 so there may be HSP blazars among the sample 3FGL sources rejected in the first step of our method. The level 165 of incompleteness is difficult to quantify due to the very similar values of the synchrotron peaks of the three blazar 166 subclasses. Nevertheless, the VHC HSP candidates, also thanks to the analysis of *Fermi*-LAT data, are convincing as 167 TeV candidates and could be promising targets for CTA observations for population studies. 168

7. ACKNOWLEDGMENTS

The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that 170 have supported both the development and the operation of the LAT as well as scientific data analysis. These include the 171 National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat 172 à l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire 173 et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare 174 in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator 175 Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg 176 Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support 177 for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica 178 in Italy and the Centre National d'Etudes Spatiales in France. This work performed in part under DOE Contract 179 DE-AC02-76SF00515. 180

MDM acknowledges support by the NASA *Fermi* Guest Investigator Program 2014 through the *Fermi* multi-year Large Program No. 81303 (P.I. E. Charles) and by the NASA *Fermi* Guest Investigator Program 2016 through the *Fermi* one-year Program No. 91245 (P.I. M. Di Mauro).

This research has made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see http://www.cta-observatory.org/science/cta-performance/ (version prod3b-v1) for more details.

Facilities: Fermi, HST(STIS), Swift(XRT and UVOT), AAVSO, CTIO:1.3m, CTIO:1.5m,CXO

REFERENCES

187	Abdo A.A. , Ackermann M., Agudo I. et al., 2010, ApJ,	199	Ajello, M. , Baldini L., Ballet J. et al., 2017, ArXiv:
188	716,30	200	1705.00009
189	Acero F., Ackermann, M., Ajello M. et al. , 2015, ApJS,	201	Alvarez Crespo N., Masetti N., Ricci F. et al., 2016 AJ,
190	218, 23	202	151, 32
191	Acero F., Ackermann, M., Ajello M. et al. , 2016, ApJS	203	Ambrogi L. , Celli S., Aharonian A. et at., 2018, APh, 69 ,
102	223 26	204	79
192	Adresson M. Ajelle M. Atwood W.P. et al. 2015 An	T ²⁰⁵	Angioni R. , Grandi P., Torresi E. et al., 2017, APh, 92,42
193	Ackermann, M., Ajeno, M., Atwood W.D. et al., 2015, Ap	206	Arsioli B., Chang Y., 2017, A&A, 598, 134
194	810, 14, 34	207	Arsioli B., Giommi P., Fragon B. et al, 2015, A&A, 579, 34 $$
195	Aharonian A., Akhperjanian A., Bazer-Bachi A. et al.,	208	Atwood W. B. , Abdo A. A., Ackermann M. et al., 2009,
196	1993, ExA, 2, 331	209	ApJ, 697, 1071
197	Ajello M., Atwood W. B., Baldini L. et al., 2017, ApJS, 23	2,210	Atwood, W., Albert, A., Baldini, L., et al. 2013, eConf
198	18	211	C121028, 8, in Proc. 4th Fermi Symposium, Monterey

Table 1. Full list of BCU HSP candidates. Columns: (1) 3FGL name; (2) Association with known source; (3) Included in 2WHSP catalog; (4) Detection TS 0.1– 300 GeV; (5) Variability TS_{VAR} ; (6) HSP Likelihood. At the top of the list are the VHC sources (L > 0.89).

3FGL name	Association	2WHSP	TS	TS_{VAR}	L _{HSP}
3FGL J0047.9+5447	1RXS J004754.5+544758		56.7	11.7	0.92
3FGL J1155.4-3417	NVSS J115520-341718	\diamond	147.3	16.2	0.92
3FGL J1434.6+6640	1RXS J143442.0+664031		73.9	16.7	0.92
3FGL J0921.0-2258	NVSS J092057-225721	\diamond	62.5	10.5	0.91
3FGL J0648.1+1606	1RXS J064814.1+160708		40.1	13.9	0.90
3FGL J1711.6+8846	1RXS J171643.8+884414	\diamond	44.3	12.4	0.90
3FGL J1714.1-2029	1RXS J171405.2-202747	\diamond	73.8	18.1	0.90
3FGL J1910.8+2855	1RXS J191053.2+285622		102.2	15.1	0.90
3FGL J0153.4+7114	TXS 0149+710		80.8	19.7	0.89
3FGL J0506.9-5435	1 ES 0505-546	\diamond	455.4	29.8	0.89
3FGL J1944.1-4523	1RXS J194422.6-452326	\diamond	100.6	11.1	0.89
3FGL J0742.4-8133c	SUMSS J074220-813139		32.2	11.8	0.88
3FGL J0043.7-1117	1RXS J004349.3-111612	\$	69.4	12.5	0.88
3FGL J1824.4+4310	1RXS J182418.7+430954	\$	80.9	19.7	0.88
3FGL J0528.3+1815	1RXS J052829.6+181657		35.6	14.6	0.87
3FGL J0646.4-5452	PMN J0646-5451		190.3	17.3	0.87
3FGL J0040.3+4049	B3 0037+405	\diamond	75.9	12.0	0.87
3FGL J1959.8-4725	SUMSS J195945-472519	\diamond	923.7	94.3	0.87
3FGL J2108.6-8619	1RXS J210959.5-861853	\diamond	91.0	10.7	0.87
3FGL J0039.0-2218	PMN J0039-2220	\diamond	89.3	11.6	0.86
3FGL J0305.2-1607	PKS 0302-16		147.6	22.9	0.86
3FGL J1040.8+1342	1RXS J104057.7+134216	\diamond	69.1	11.0	0.86
3FGL J2312.9-6923	SUMSS J231347-692332	\diamond	35.3	16.1	0.86
3FGL J0515.5-0123	NVSS J051536-012427		45.6	11.7	0.85
3FGL J0620.4+2644	RX J0620.6+2644	\diamond	92.0	15.1	0.85
3FGL J0640.0-1252	TXS 0637-128	\diamond	174.1	14.4	0.85
3FGL J0733.5+5153	NVSS J073326+515355	\diamond	104.3	11.1	0.85
3FGL J1141.2+6805	1RXS J114118.3+680433		140.0	23.3	0.85
3FGL J1203.5-3925	PMN J1203-3926	\$	103.2	18.5	0.85
3FGL J1939.6-4925	SUMSS J193946-492539		64.5	15.9	0.85
3FGL J2316.8-5209	SUMSS J231701-521003		37.3	15.1	0.85
3FGL J0132.5-0802	PKS 0130-083		71.9	12.4	0.8
3FGL J0342.6-3006	PKS 0340-302		43.1	13.3	0.8
3FGL J1446.8-1831	NVSS J144644-182922	\diamond	27.9	8.6	0.84
3FGL J1855.1-6008	PMN J1854-6009		21.3	6.7	0.84
3FGL J0043.5-0444	1RXS J004333.7-044257	\diamond	75.9	11.9	0.83
3FGL J0746.9+8511	NVSS J074715+851208	\diamond	118.9	18.3	0.83
3FGL J0650.5+2055	1RXS J065033.9+205603		206.2	20.0	0.82
3FGL J1319.6+7759	NVSS J131921+775823		182.6	25.1	0.82
3FGL J1908.8-0130	NVSS J190836-012642		306.4	35.5	0.82
3FGL J2347.9+5436	NVSS J234753+543627		163.0	21.7	0.82
3FGL J0204.2+2420	B2 0201+24		27.6	12.	0.81
3FGL J0439.6-3159	1RXS J043931.4-320045	\diamond	119.8	24.9	0.81
3FGL J1547.1-2801	1RXS J154711.8-280222		96.7	16.7	0.81
3FGL J1612.4-3100	NVSS J161219-305937	\diamond	494.9	116.1	0.81
3FGL J0030.2-1646	1RXS J003019.6-164723	\diamond	168.7	30.1	0.80
3FGL J1158.9+0818	RX J1158.8+0819	\diamond	51.4	11.8	0.80
3FGL J1841.2+2910	MG3 J184126+2910	\diamond	195.9	22.8	0.80

Figure 2. SEDs of the VHC BCU sources as TeV candidates. The dashed (dotted) line denotes the extrapolation of the best-fit spectra up to 10 TeV for a redshift of z = 0 (z = 0.5) The shaded region indicates the possible source flux for redshifts between $0 < z \le 0.5$. The CTA sensitivity for 5 (50) hours of observation is shown as a gray dashed (solid) line.

913/11	OWNED	ma	тa	τ
3FGL name	2WHSP	15	TS_{VAR}	L_{HSP}
3FGL J1549.9-3044		64.2	10.1	0.91
3FGL J2142.6-2029		36.0	8.1	0.91
3FGL J2321.6-1619		34.1	45.1	0.91
3FGL J2145.5+1007		52.5	19.9	0.90
3FGL J2300.0+4053		174.5	6.9	0.90
3FGL J1155.3-1112		52.4	11.3	0.89
3FGL J2224.4+0351		29.5	9.5	0.89
3FGL J1525.8-0834	\diamond	59.5	23.2	0.89
3FGL J1619.1+7538		107.1	14.9	0.88
3FGL J0251.1-1829		104.2	10.2	0.88
3FGL J0020.9+0323		60.6	22.5	0.88
3FGL J0813.5-0356		57.0	13.1	0.88
3FGL J1234.7-0437		51.5	29.7	0.87
3FGL J1922.2+2313		80.8	22.6	0.87
3FGL J2043.6+0001		48.4	24.4	0.87
3FGL J0312.7-2222		177.1	18.2	0.87
3FGL J1513.3-3719	\diamond	54.7	18.0	0.87
3FGL J0524.5-6937		94.1	18.3	0.86
3FGL J1225.4-3448		22.2	7.0	0.86

43.8

77.0

17.4

359.6

90.7

150.1

37.0

50.9

51.8

26.2

36.9

40.2

98.7

14.7

17.6

14.6

43.9

20.7

11.8

12.9

14.1

14.7

11.7

16.5

15.5

26.6

0.86

0.85

0.85

0.85

0.84

0.84

0.84

0.84

0.83

0.83

0.82

0.82

0.80

237

238

Table 2. Full list of UCS_{agn} HSP candidates. Columns: (1) 3FGL name; (2) Included in 2WHSP; (3) Detection TS 0.1–300 GeV; (4) Variability TS_{VAR} ; (5) HSP Likelihood. At the top of the list are the VHC sources (L > 0.89).

212	Bishop C.M.	Neural	Network f	for Pattern	Recognition,	1995225
-----	-------------	--------	-----------	-------------	--------------	---------

 \diamond

 \diamond

 \diamond

 \diamond

3FGL J1222.7+7952

3FGL J2309.0+5428

3FGL J2015.3-1431

3FGL J2053.9+2922

3FGL J0234.2-0629

3FGL J1545.0-6641

3FGL J0731.8-3010

3FGL J0952.8+0711

3FGL J0527.3+6647

3FGL J1528.1-2904

3FGL J0049.0+4224

3FGL J1057.6-4051

3FGL J0928.3-5255

- Carosi A., 2015, Proceeding of the 34th International 226 213 Cosmic Ray Conference, p. 5 227 214 228 Chang Y.L., Arsioli B., Giommi P. et al., 2017, A&A, 215 229 598, 17 216 230 Chiaro G., D.Salvetti, G. La Mura et al., 2016 MNRAS 217 231 462.3.3180C 218 232 Costamante L., 2002, A&A, 384, 56 219 233 De Naurois M., Mazin D., 2015, Comptes rendus -220 234 Physique, 16, 610 221 235 De Naurois M, Rolland L., 2009, Aph, 32, 331 222 236
- ²²³ Doert M., Errando M., 2014, ApJ, 782, 41
- ²²⁴ Dwek E., Krennrich F., 2013, APh, 43,112

- Dominguez A., Primack J. R.; Rosario D. J. et al.,2011, MNRAS, 410, 2556
- Ghisellini G., 2013, EPJ Web of Conference, Vol. 61, id.05001.
- Gish H., 1990, Proceeding on Acoustic Speech and Signal Processing, p. 1361
- Gould R., Schreder G., 1967, Ph Rv, 155, 1408
- Hassan T., Dominguez A., Leufaucher J. et al, 2013, arxiv 1708.0774
- Hauser M., DweK E., 2001, ARAA, 2001, 39, 249
- Hillas A.M. , Akerlof, C. W., Biller, S. D et al., 1998, ApJ, 503, 744
- Horan D., Wakeley S., 2008, AAS, HEAD meeting 10, id.41.06

Table 3. Results of the *Fermi*-LAT analysis of the full list of BCU HSP candidates. Columns: (1) 3FGL name; (2) RA; (3) DEC; (4) 68% error on the position; (5) Detection TS 0.1–300 GeV; (6) Pivot energy; (7) Spectral Index; (8) Flux in the energy range 0.1–300 GeV; 9) Energy flux in the energy range 0.1–300 GeV

3FGL name	BA	DEC	noses%	TS	Pivot Energy	Sp Index	Flux	Energy Flux
	[deg]	[deg]	[deg]	10	MeV	opinidon	$[10^{-9} \text{ ph/cm}^2/\text{s}]$	$\frac{10^{-6} \text{ MeV/cm}^2/\text{s}}{[10^{-6} \text{ MeV/cm}^2/\text{s}]}$
3FGL 10030 2-1646	7 59	-16.82	0.02	168 7	5255	1.66 ± 0.08	134 + 33	57 ± 15
3FGL 10039 0-2218	9.77	-10.02	0.02	89.3	5338	1.00 ± 0.00 1.67 ± 0.11	92 + 29	3.7 ± 1.0 3.7 ± 1.2
3FGL 10040 3+4049	10.09	40.83	0.03	75.9	5638	1.07 ± 0.11 1.92 ± 0.16	18.2 ± 2.0	2.3 ± 0.6
3FGL 10043 5-0444	10.05	-4 72	0.03	54.0	4015	1.92 ± 0.10 1.91 ± 0.15	16.2 ± 7.1	2.0 ± 0.0 2.1 ± 0.6
3FGL 10043 7-1117	10.00	-11 31	0.04	69.4	3405	1.91 ± 0.19 1.86 ± 0.12	16.2 ± 7.2 16.0 ± 5.3	2.1 ± 0.0 2.6 ± 0.8
$3FCL_10047.0\pm5447$	10.04	5/ 81	0.04	56 7	10002	1.00 ± 0.12 1.58 ± 0.16	10.0 ± 0.5 4.0 ± 3.2	2.0 ± 0.0 3.2 ± 1.3
3FCL 10132 5 0802	12.02 23.10	8.07	0.03	71.0	3012	1.33 ± 0.10 1.87 ± 0.11	4.9 ± 5.2 16.8 ± 5.4	3.2 ± 1.3 2.5 ± 0.7
3FGL J0152.5-0302	20.19	-0.07	0.00	80.0	6425	1.87 ± 0.11 1.82 ± 0.13	10.8 ± 0.4 17.5 ± 7.2	2.5 ± 0.7 3.4 ± 0.0
$2ECI = 10204.2 \pm 2420$	20.40	11.20 94.97	0.02	00.9 27.6	7201	1.82 ± 0.13 1.70 ± 0.16	17.5 ± 7.5 4.7 ± 2.6	5.4 ± 0.9
2ECI 10205 2 1607	31.09 46.20	16 14	0.04	27.0 147.6	4006	1.70 ± 0.10 1.80 ± 0.11	4.7 ± 2.0 17.9 ± 5.9	1.0 ± 0.0 2.8 \pm 1.0
2FGL J0203.2-1007	40.29 55 71	-10.14	0.02	147.0	4900	1.80 ± 0.11 1.06 ± 0.14	17.0 ± 3.0 12.5 ± 4.7	3.0 ± 1.0 1 2 \pm 0 4
2FGL J0342.0-3000	00.71 60.95	-30.11	0.04	40.2	2033	1.90 ± 0.14	12.3 ± 4.7 12.2 ± 2.0	1.3 ± 0.4
3FGL J0439.0-3159	09.80 76.76	-32.03	0.03	119.9	4973	1.75 ± 0.09	13.3 ± 3.9	3.0 ± 1.0
3FGL J0506.9-5435	70.70	-54.00	0.01	455.4	6916 5114	1.50 ± 0.05	14.2 ± 2.2	14.3 ± 2.7
3FGL J0515.5-0123	(8.87	-1.42	0.04	45.7	5114	1.80 ± 0.12	11.4 ± 4.4	2.5 ± 0.8
3FGL J0528.3+1815	82.11	18.27	0.04	35.7	9388	1.67 ± 0.15	6.6 ± 3.6	2.6 ± 1.1
3FGL J0620.4+2644	95.17	26.74	0.02	92.0	17855	1.54 ± 0.11	6.3 ± 2.8	5.2 ± 1.6
3FGL J0640.0-1252	100.01	-12.90	0.02	174.1	15629	1.52 ± 0.09	10.3 ± 3.4	9.1 ± 2.3
3FGL J0646.4-5452	101.62	-54.92	0.03	190.3	1808	1.46 ± 0.19	8.8 ± 1.8	1.5 ± 0.2
3FGL J0648.1+1606	102.03	16.09	0.03	40.1	7506	1.82 ± 0.16	10.7 ± 5.9	2.1 ± 0.7
3FGL J0650.5+2055	102.64	20.93	0.02	206.2	5767	1.72 ± 0.08	21.9 ± 5.7	6.8 ± 1.6
3FGL J0733.5+5153	113.35	51.86	0.03	104.3	6571	1.69 ± 0.10	9.9 ± 3.2	3.7 ± 1.1
3FGL J0742.4-8133c	115.45	-81.54	0.05	32.3	3120	2.03 ± 0.28	21.1 ± 15.4	1.7 ± 0.6
3FGL J0746.9+8511	117.25	85.22	0.03	119.0	5610	1.68 ± 0.09	10.0 ± 2.8	3.9 ± 1.1
3FGL J0921.0-2258	140.24	-22.95	0.03	62.5	5942	1.74 ± 0.14	9.4 ± 4.1	2.7 ± 1.0
3FGL J1040.8+1342	160.26	13.72	0.03	69.1	6670	1.71 ± 0.12	8.3 ± 3.4	2.7 ± 1.0
3FGL J1141.2+6805	175.33	68.08	0.02	140.1	5131	1.69 ± 0.09	10.9 ± 2.8	4.0 ± 1.1
3FGL J1155.4-3417	178.87	-34.33	0.02	147.3	6825	1.64 ± 0.09	11.8 ± 3.3	5.7 ± 1.6
3FGL J1158.9+0818	179.71	8.31	0.04	51.5	4579	1.81 ± 0.14	11.0 ± 4.6	2.2 ± 0.8
3FGL J1203.5-3925	180.85	-39.42	0.03	103.2	6994	1.70 ± 0.10	13.5 ± 4.5	4.7 ± 1.3
3FGL J1319.6+7759	199.95	78.01	0.02	182.6	2448	1.95 ± 0.08	28.3 ± 5.9	3.1 ± 0.6
3FGL J1434.6+6640	218.72	66.67	0.03	73.9	7426	1.58 ± 0.12	4.4 ± 1.7	2.8 ± 1.1
3FGL J1446.8-1831	221.75	-18.51	0.05	27.9	7841	1.71 ± 0.15	6.1 ± 3.3	2.1 ± 0.9
3FGL J1547.1-2801	236.81	-28.04	0.03	96.8	6165	1.78 ± 0.09	19.0 ± 6.1	4.5 ± 1.1
3FGL J1612.4-3100	243.10	-30.99	0.02	495.0	2091	1.86 ± 0.08	38.0 ± 7.8	5.4 ± 0.5
3FGL J1714.1-2029	258.52	-20.48	0.03	73.8	25559	1.44 ± 0.15	5.1 ± 2.3	7.0 ± 2.2
3FGL J1711.6+8846	258.67	88.75	0.04	44.3	5023	1.83 ± 0.12	8.8 ± 4.2	1.6 ± 0.6
3FGL J1824.4+4310	276.12	43.18	0.03	80.9	5687	1.83 ± 0.12	13.6 ± 5.3	2.5 ± 0.7
3FGL J1841.2+2910	280.36	29.16	0.02	195.9	5355	1.80 ± 0.08	29.0 ± 7.1	6.2 ± 1.2
3FGL J1855.1-6008	283.67	-60.13	0.06	21.4	5051	1.84 ± 0.16	7.2 ± 3.9	1.3 ± 0.6
3FGL J1908.8-0130	287.20	-1.53	0.02	306.4	2468	1.52 ± 0.21	18.6 ± 2.8	4.1 ± 0.4
3FGL J1910.8+2855	287.71	28.94	0.02	102.3	9826	1.62 ± 0.10	9.8 ± 3.3	5.1 ± 1.4
3FGL J1939.6-4925	294.96	-49.47	0.03	64.6	4276	1.85 ± 0.11	14.9 ± 5.0	2.6 ± 0.7
3FGL J1944.1-4523	296.11	-45.38	0.02	100.7	9091	1.64 ± 0.10	9.4 ± 3.3	4.5 ± 1.3
3FGL J1959.8-4725	299.94	-47.43	0.01	923.8	2667	1.52 ± 0.08	30.5 ± 5.0	8.5 ± 1.0
3FGL J2108.6-8619	316.99	-86.31	0.03	91.0	8505	1.65 ± 0.12	10.3 ± 4.0	4.6 ± 1.5
3FGL J2312.9-6923	348.40	-69.39	0.04	35.3	6111	1.72 ± 0.17	5.5 ± 2.9	1.7 ± 0.8
3FGL J2316.8-5209	349.28	-52.19	0.06	37.3	3463	1.89 ± 0.16	10.8 ± 5.0	1.5 ± 0.6
3FGL J2347.9+5436	356.97	54.58	0.02	163.0	5858	1.79 ± 0.08	24.2 ± 6.4	5.4 ± 1.1

Figure 3. SEDs of the VHC UCS sources as TeV candidates. The dashed (dotted) line denotes the extrapolation of the best-fit spectra up to 10 TeV for a redshift of z = 0 (z = 0.5) The shaded region indicates the possible source flux for redshifts between $0 < z \le 0.5$. The CTA sensitivity for 5 (50) hours of observation is shown as a gray dashed (solid) line.

11

Table 4. Same as Table 3 for UCS_{agn} HSP candidates.

3FGL name	RA	DEC	$pos_{68}\%$	TS	Pivot Energy	Sp.Index	Flux	Energy Flux
	[deg]	[deg]	[deg]		MeV		$[10^{-9} \text{ ph/cm}^2/\text{s}]$	$[10^{-6} \text{ MeV/cm}^2/\text{s}]$
3FGL J0020.9+0323	5.26	3.36	0.04	60.7	2545	2.01 ± 0.14	23.3 ± 8.4	2.1 ± 0.5
3FGL J0049.0+4224	12.26	42.38	0.04	37.0	6743	1.81 ± 0.16	8.1 ± 4.4	1.7 ± 0.6
3FGL J0234.2-0629	38.59	-6.47	0.03	90.7	3885	1.83 ± 0.11	15.6 ± 4.8	2.9 ± 0.8
3FGL J0251.1-1829	42.79	-18.50	0.02	104.3	6889	1.59 ± 0.10	7.0 ± 2.2	4.3 ± 1.4
3FGL J0312.7-2222	48.15	-22.36	0.02	177.1	3384	1.84 ± 0.08	22.3 ± 5.2	3.9 ± 0.9
3FGL J0506.9+0321	76.71	3.38	0.03	77.1	5921	1.81 ± 0.12	15.3 ± 6.0	3.0 ± 0.9
3FGL J0524.5-6937	81.16	-69.61	0.03	94.1	3485	2.05 ± 0.15	49.4 ± 21.2	3.8 ± 0.7
3FGL J0527.3+6647	81.86	66.80	0.03	51.9	4664	1.91 ± 0.15	13.0 ± 6.0	1.7 ± 0.5
3FGL J0731.8-3010	112.96	-30.13	0.04	37.1	4523	1.96 ± 0.17	22.4 ± 11.9	2.4 ± 0.7
3FGL J0813.5-0356	123.45	-3.95	0.04	57.0	6101	1.71 ± 0.12	9.1 ± 3.5	3.0 ± 1.1
3FGL J0928.3-5255	142.09	-52.94	0.02	98.7	4267	2.09 ± 0.09	88.0 ± 25.5	6.0 ± 0.9
3FGL J0952.8+0711	148.22	7.23	0.04	51.0	3731	1.92 ± 0.15	14.0 ± 6.0	1.8 ± 0.6
3FGL J1057.6-4051	164.43	-40.87	0.03	40.2	7420	1.72 ± 0.15	6.6 ± 3.4	2.1 ± 0.9
3FGL J1155.3-1112	178.82	-11.19	0.03	52.5	2876	2.03 ± 0.22	21.2 ± 8.9	1.8 ± 0.5
3FGL J1222.7+7952	185.92	79.90	0.04	43.8	2784	2.13 ± 0.22	21.1 ± 12.1	1.3 ± 0.3
3FGL J1225.4-3448	186.35	-34.75	0.05	22.3	7527	1.74 ± 0.19	5.1 ± 3.4	1.5 ± 0.7
3FGL J1234.7-0437	188.71	-4.56	0.04	51.5	3563	2.01 ± 0.14	23.5 ± 9.7	2.1 ± 0.5
3FGL J1513.3-3719	228.35	-37.39	0.03	54.7	4817	1.94 ± 0.13	19.8 ± 8.4	2.3 ± 0.6
3FGL J1525.8-0834	231.53	-8.53	0.03	59.5	3993	1.92 ± 0.12	20.0 ± 7.3	2.5 ± 0.6
3FGL J1528.1-2904	232.12	-29.11	0.06	26.3	7353	1.80 ± 0.18	8.7 ± 5.4	1.8 ± 0.8
3FGL J1545.0-6641	236.21	-66.71	0.02	150.1	11249	1.60 ± 0.10	11.2 ± 3.9	6.6 ± 1.8
3FGL J1549.9-3044	237.46	-30.75	0.02	64.3	9844	1.61 ± 0.12	6.2 ± 2.6	3.5 ± 1.2
3FGL J1619.1+7538	244.78	75.61	0.02	107.1	3836	1.87 ± 0.10	15.5 ± 4.7	2.4 ± 0.6
3FGL J1922.2+2313	290.57	23.25	0.03	80.8	2942	2.22 ± 0.14	93.1 ± 36.7	4.5 ± 0.7
3FGL J2015.3-1431	303.81	-14.55	0.06	17.4	8312	1.81 ± 0.21	5.6 ± 4.2	1.1 ± 0.5
3FGL J2043.6+0001	310.94	0.00	0.04	48.5	2753	2.02 ± 0.14	21.5 ± 8.1	1.9 ± 0.5
3FGL J2053.9+2922	313.45	29.37	0.02	359.6	5647	1.77 ± 0.06	46.0 ± 8.4	11.5 ± 1.7
3FGL J2142.6-2029	325.66	-20.50	0.04	36.1	7683	1.69 ± 0.17	5.0 ± 2.9	1.9 ± 0.9
3FGL J2145.5+1007	326.38	10.13	0.03	34.1	10875	1.70 ± 0.20	4.8 ± 3.4	1.6 ± 0.8
3FGL J2224.4+0351	336.12	3.89	0.05	29.5	2865	1.94 ± 0.18	13.2 ± 6.4	1.5 ± 0.6
3FGL J2300.0+4053	345.06	40.88	0.03	52.5	8886	$1.64{\pm}0.14$	6.2 ± 3.0	2.9 ± 1.2
3FGL J2309.0+5428	347.20	54.41	0.03	77.1	7135	1.75 ± 0.10	16.2 ± 5.7	4.4 ± 1.2
3FGL J2321.6-1619	350.40	-16.32	0.02	174.5	4141	1.73 ± 0.08	17.3 ± 4.1	5.2 ± 1.3

239	Hoecker, A., Speckmayer, P., Stelzer, J., et al. ,2007, ArXiv	V251	Pi
240	Physics 0703039	252	R
241	Kolmogorov A., 1933, G. Ist. Ital. Attuariale 4, 83	253	
242	Kashlinsky A. et al.,2005, 409,361	254	R
243	Lefaucheur J., Pita S. 2007, A&A, 602,86	255	_
244	Lott B. , Escande, L., Larsson, S et al., 2012, A&A, 544, A	6^{256}	R
245	Massaro F., Paggi A. , Errando M. et al., 2013, ApJS,	257	ę,
246	207,16	258	Se
247	Massaro F. , Landoni R. D'Abrusco D. et al.,2015,A&A, 24	259	St
248	2	261	W
249	Nikisov A., 1962, Sov.Phys., 14,393	262	W
250	Padovani P., Giommi P., Rau A., 2012, MNRAS, 422, 48	263	

ita S. , 2017, AIPC, 1792,25

- ichard M. P., and Lippman R. P., 1991, Neural Computation, 3, 461
- ieger F.M., Wilhelmi, E., Aharonian A. et al, 2013, FrPhy, 8, 714
- umelhart, D. E., Hinton, G. E., Williams, R. J. 1986, Nature
- az Parkinson P., Xu H., Yu P. et al, (2016), ApJ, 820,2
- alvetti D. Chiaro G. , La Mura G. et al., 2017, MNRAS, 470, 1291

Vilks S.S., 1938, AMS, 9, 60

Vood M., Caputo R., Charles E. et al. 2017, ArXiv: 1707.09551

Table 5. Maximum redshift values so that the BCU VHC and UCS_{agn} VHC are still detectable at 5 σ in a 5 (50) hours of CTA (current IACT) observation. If no value is given, the source will not be significantly detected with the assumed observation time.

BCU HC_{TeV} candidates							
3FGL name	$z_{\rm max} \ (T_{\rm obs} = 5 {\rm hours})$	$z_{\rm max} \ (T_{\rm obs} = 50 {\rm hours})$					
3FGL J0047.9+5447	0.15	> 0.50					
3FGL J1155.4-3417	0.40	> 0.50					
3FGL J1434.6+6640	0.13	> 0.50					
3FGL J0921.0-2258	0.11	> 0.50					
3FGL J0648.1+1606	0.01	0.29					
3FGL J1711.6 $+8846$	—	0.22					
3FGL J1714.1-2029	> 0.50	> 0.50					
3FGL J1910.8+2855	0.25	> 0.50					
3FGL J0153.4+7114	0.08	> 0.50					
3FGL J0506.9-5435	> 0.50	> 0.50					
3FGL J1944.1-4523	0.29	> 0.50					
	$UCS_{agn} HC_{TeV}$ candida	tes					
3FGL J1549.9-3044	0.21	> 0.50					
3FGL J2142.6-2029	0.08	0.42					
3FGL J2321.6-1619	0.31	> 0.50					
3FGL J2145.5+1007	0.02	0.26					
3FGL J2300.0+4053	0.12	> 0.50					