2016 data: profile plots with best aligned geometry (so far)

Alessandra Filippi

May 14, 2018

2016 data @ 0.5 mm

Moller and FEE analysis with Sho's cuts

- One good detector chosen (my reference: v5-21)
- In reconstruction: fixed beamspot $(0,0)$ and $z_{\text {target }}=0$
- This means: z_{vtx} still wrong
- Purpose
- analyse Moller pairs and FEE tracks with the same cuts applied by Sho for 2015 data (changing scale where needed)
- Check consistency with 2015 results and internal consistency
- Input: FEE and Moller ntuple out of the reconstruction
- Checked by Miriam: no double corrections
- Outputs in mm! (while hps-java gets offsets in cm... a ittle misunderstanding of scale)

Moller events: common cuts

- Top-bottom track time:
- |topTrkT-botTrkT|<3 ns
- Tracks in detector acceptance (close to z axis):
- Large θ_{x} angle for tracks (from unconstrained and fitted momentum):
- |uncPX/uncP|<0.005
- |topPX/topP|<0.01 (same for bottom)
- Large θ_{y} angle (from unconstrained and fitted momentum):
- |uncPY/uncP|<0.005

Moller evts: z_{0} impact parameter vs $\cos \theta_{y}$

Moller evts: d_{0} impact parameter vs $\cos \theta_{\mathrm{y}}$

Moller evts: d_{0} impact parameter vs $\cos \theta_{y}$ in energy steps - TOP half

Selection in energy intervals 160 MeV wide from ~ 700 MeV A dependence on energy should not be desirable (this would imply a dependence on acceptance)... but there is
Some sort of parabolic trend of d0 central value

Moller evts: d_{0} impact parameter vs $\cos \theta_{y}$ in energy steps- BOTTOM half

Selection in energy intervals 160 MeV wide from ~ 700 MeV

(opening angle between the two tracks)

When the tracks are at large azimuthal angles, the invariant mass of the electron pair is larger

Moller events: invariant mass (e-e-) vs $\Delta \mathrm{p}$ (top-bottom)

Flat enough to be happy enough

$\theta_{z}-\theta$ (from Moller formula) vs φ in energy ranges - TOP half

Trend of dip angle correction as a function of the azimuth angle and energy

$$
\begin{aligned}
& y=\arccos \theta_{z}-\arccos \left(1-m_{e}\left(1 / p-1 / E_{b}\right)\right) \\
& x=\arctan \left(p_{y}, p_{x}\right)
\end{aligned}
$$

Selection in energy intervals 160 MeV wide from $\sim 700 \mathrm{MeV}$ Flat enough

$\theta_{z}-\theta$ (from Moller formula) vs φ in energy ranges - BOTTOM half

Selection in energy intervals 160 MeV wide from $\sim 700 \mathrm{MeV}$ Flat enough

FEE events: common cuts

- Trigger:
- isSingle0 || isSingle1
- Max number of hits per track:
- fspTrkHits==6
- Ecal-svt match χ^{2} :
- fspMatchChisq<3
- Ecal cluster energy: 85\% Ebeam
- fspCIE $<0.85^{*}$ Ebeam
- No cut of track fit quality (track $\chi^{2}-I$ usually ask $\chi^{2}<20$)

FEE: z_{0} impact parameter vs $\cos \theta_{y}$

FEE: d_{0} impact parameter vs $\cos \theta_{x}$

top

	Top	Bottom
PO	0.1	0.01
P1	5.98	4.82

FEE: p vs $\cos \theta_{x}$

FEE: p vs $\cos \theta_{y}$

Electron side: $\mathrm{fspPX} / \mathrm{fspP}<0.01$ (hole side)

	Top	Bottom
P0	2.39	2.93
P1	-3.76	-0.20

ToDo list

- FEE plots are the cleanest and reliable ones
- Results are consistent with what was found for 2015 data
- Both z_{0} and d_{0} scatter plots indicate the $\mathrm{z}_{\mathrm{Tar}}$ is at about -5 mm
- Try to use the information from these plots to fix the position of the target (use the values provided by the scatter plots as offsets and check results)
- Inserting the $z_{\text {tar }}$ information as millepede global offset for z translations of all sensors is not particularly useful, as this offset is absorbed by other z alignment corrections
- Check the effect on the reconstruction if the new target position is inserted in ReconParticleDriver

