2016 data: profile plots with best aligned geometry (so far)

Alessandra Filippi May 14, 2018

2016 data @ 0.5 mm Moller and FEE analysis with Sho's cuts

- One good detector chosen (my reference: v5-21)
- In reconstruction: fixed beamspot (0,0) and z_{target}=0
 - This means: z_{vtx} still wrong

Purpose

- analyse Moller pairs and FEE tracks with the same cuts applied by Sho for 2015 data (changing scale where needed)
- Check consistency with 2015 results and internal consistency
- Input: FEE and Moller ntuple out of the reconstruction
 - Checked by Miriam: no double corrections
 - Outputs in mm! (while hps-java gets offsets in cm... a ittle misunderstanding of scale)

Moller events: common cuts

- Top-bottom track time:
 - |topTrkT-botTrkT| < 3 ns</p>
- Tracks in detector acceptance (close to z axis):
 - Large θ_x angle for tracks (from unconstrained and fitted momentum):
 - |uncPX/uncP|<0.005
 - |topPX/topP|<0.01 (same for bottom)
 - Large θ_y angle (from unconstrained and fitted momentum):
 - |uncPY/uncP|<0.005

Moller evts: z_0 impact parameter vs $cos\theta_y$

The TOP distribution has a less uniform structure (striped? Why only for top??) Some troubles with y coordinate reconstruction? (could be due to strip pitch by why not seen in both halves?)

	Тор	Bottom
P0	-0.12	0.32
P1	2.30	9.09

Moller evts: d_0 impact parameter vs $cos\theta_y$

Moller evts: d_0 impact parameter vs $cos\theta_y$ in energy steps - TOP half

Selection in energy intervals 160 MeV wide from ~700 MeV A dependence on energy should not be desirable (this would imply a dependence on acceptance)... but there is Some sort of parabolic trend of d0 central value

Moller evts: d_0 impact parameter vs $cos\theta_y$ in energy steps- BOTTOM half

Selection in energy intervals 160 MeV wide from ~700 MeV

Moller evts: invariant mass (e^-e^-) vs $\Delta \phi$ (opening angle between the two tracks)

When the tracks are at large azimuthal angles, the invariant mass of the electron pair is larger

Moller events: invariant mass (e^-e^-) vs Δp (top-bottom)

Flat enough to be happy enough

θ_z - θ (from Moller formula) vs ϕ in energy ranges – TOP half

Trend of dip angle correction as a function of the azimuth angle and energy

$$y = \arccos \theta_z - \arccos(1 - m_e(1/p - 1/E_b))$$

$$x = \arctan(p_y, p_x)$$

Selection in energy intervals 160 MeV wide from ~700 MeV Flat enough

θ_z -θ (from Moller formula) vs ϕ in energy ranges – BOTTOM half

Selection in energy intervals 160 MeV wide from ~700 MeV Flat enough

FEE events: common cuts

- Trigger:
 - isSingle0 || isSingle1
- Max number of hits per track:
 - fspTrkHits==6
- Ecal-svt match χ^2 :
 - fspMatchChisq<3</p>
- Ecal cluster energy: 85% Ebeam
 - fspClE < 0.85*Ebeam</p>
- No cut of track fit quality (track $\chi^2 I$ usually ask $\chi^2 < 20$)

FEE: z_0 impact parameter vs $cos\theta_y$

	Тор	Bottom
Р0	-0.17	0.17
P1	5.20	5.95

Use these values as z_{Tar} input for alignment? (the "old famous" 5 mm...)

FEE: d_0 impact parameter vs $cos\theta_x$

F	p1 5.976 ± 0.033	
0.8	+	
0.2	+++++++++++++++++++++++++++++++++++++++	fspTrkD0:fspPX/fspP ((icSingle0 icSingle1)&&fspTrkHits=6&&fspMatchChisq<3&&fspCile>0.85*2.308&&fspP
-0.6 _{0.1}		

	Тор	Bottom
Р0	0.1	0.01
P1	5.98	4.82

bottom

FEE: p vs $cos\theta_x$

Fitted value	of par[1]=Mean	CO3O _X
2.8	χ² / ndf	7680 / 78
≨	pO	2.263 ± 0.001
2.7	p1	-1.544 ± 0.011
2.6	0.05 0.11	x relative to beam axis [rad]

	Тор	Bottom
P0	2.26	2.26
P1	-0.63	-1.54

FEE: p vs $\cos \theta_{v}$

top

Electron side: fspPX/fspP<0.01 (hole side)

bottom

ToDo list

- FEE plots are the cleanest and reliable ones
 - Results are consistent with what was found for 2015 data
 - Both z_0 and d_0 scatter plots indicate the z_{Tar} is at about -5 mm
- Try to use the information from these plots to fix the position of the target (use the values provided by the scatter plots as offsets and check results)
 - Inserting the z_{tar} information as millepede global offset for z translations of all sensors is not particularly useful, as this offset is absorbed by other z alignment corrections
 - Check the effect on the reconstruction if the new target position is inserted in ReconParticleDriver