2016 data: profile plots with best aligned geometry (so far)

Alessandra Filippi May 14, 2018

2016 data @ 0.5 mm Moller and FEE analysis with Sho's cuts

- One good detector chosen (my reference: v5-21)
- In reconstruction: fixed beamspot (0,0) and z_{target}=0
 - This means: z_{vtx} still wrong
- Purpose
 - analyse Moller pairs and FEE tracks with the same cuts applied by Sho for 2015 data (changing scale where needed)
 - Check consistency with 2015 results and internal consistency
- Input: FEE and Moller ntuple out of the reconstruction
 - Checked by Miriam: no double corrections
 - Outputs in mm! (while hps-java gets offsets in cm... a ittle misunderstanding of scale)

Moller events: common cuts

- Top-bottom track time:
 - |topTrkT-botTrkT|< 3 ns</p>
- Tracks in detector acceptance (close to z axis):
 - Large $\theta_{\rm x}$ angle for tracks (from unconstrained and fitted momentum):
 - |uncPX/uncP|<0.005
 - |topPX-topP|<0.01 (same for bottom)
 - Large $\theta_{\rm y}$ angle (from unconstrained and fitted momentum):
 - |uncPY/uncP|<0.005

Moller evts: z_0 impact parameter vs $cos\theta_v$

 Top
 Bottom

 P0
 -0.12
 0.32

 P1
 2.30
 9.09

The TOP distribution has a less uniform structure (striped? Why only for top??) Some troubles with y coordinate reconstruction? (could be due to strip pitch by why not seen in both halves?)

Moller evts: d_0 impact parameter vs $cos\theta_y$

Moller evts: d_0 impact parameter vs $cos\theta_y$ in energy steps - TOP half

Selection in energy intervals 160 MeV wide from ~700 MeV A dependence on energy should not be desirable (this would imply a dependence on acceptance)... but there is Some sort of parabolic trend of d0 central value

Moller evts: d_0 impact parameter vs $cos\theta_y$ in energy steps- BOTTOM half

Selection in energy intervals 160 MeV wide from ~700 MeV

Moller evts: invariant mass (e^-e^-) vs $\Delta \phi$ (opening angle between the two tracks)

(tarM*2.306/tarP):atan2(topPY-botPY,topPX-botPX) {abs(topTrkT-botTrkT)<3&&abs(uncPY/uncP)<0.005&&abs(uncPX/uncP)<0.005&&abs(topP-botP)<0.1}

When the tracks are at large azimuthal angles, the invariant mass of the electron pair is larger

Moller events: invariant mass (e⁻e⁻) vs ∆p(top-bottom)

(tarM*2.306/tarP):topP-botP {abs(topTrKT-botTrKT)<3&&abs(uncPY/uncP)<0.005&&abs(uncPX/uncP)<0.005&&abs(atar2(topPY-botPY,topPX-botPX)-TMath::Pi()/2)<0.1}

Flat enough to be happy enough

θ_z - θ (from Moller formula) vs ϕ in energy ranges – TOP half

Trend of dip angle correction as a function of the azimuth angle and energy

$$y = \arccos \theta_z - \arccos(1 - m_e(1 / p - 1 / E_b))$$

 $x = \arctan(p_y, p_x)$

Selection in energy intervals 160 MeV wide from ~700 MeV Flat enough

θ_z - θ (from Moller formula) vs ϕ in energy ranges – BOTTOM half

Selection in energy intervals 160 MeV wide from ~700 MeV Flat enough

FEE events: common cuts

- Trigger:
 - isSingle0 || isSingle1
- Max number of hits per track:
 - fspTrkHits==6
- Ecal-svt match χ^2 :
 - fspMatchChisq<3
- Ecal cluster energy: 85% Ebeam
 - fspClE < 0.85*Ebeam</p>
- No cut of track fit quality (track $\chi^2 I$ usually ask $\chi^2 < 20$)

FEE: z_0 impact parameter vs $cos\theta_v$

Use these values as z_{Tar} input for alignment? (the "old famous" 5 mm...)

FEE: d_0 impact parameter vs $cos\theta_x$

-1.5

	Тор	Bottom
PO	0.1	0.01
P1	5.98	4.82

bottom

 $\cos\theta_x$

4338 / 70 0.01041 ± 0.00219

 4.819 ± 0.031

100

FEE: $p vs cos\theta_x$

p_₹

p [GeV]

FEE: $p vs cos\theta_y$

top

Electron side: fspPX/fspP<0.01 (hole side)

fspP:fspPY/fspP {(isSingle0||isSingle1)&&fspTrtHits==6&&fspMatchChisq<3&&fspCiE>0.85*2.306&&abs(fspPX/fspP)<0.01&&fspPY<0}

	Тор	Bottom
P0	2.39	2.93
P1	-3.76	-0.20

ToDo list

- FEE plots are the cleanest and reliable ones
 - Results are consistent with what was found for 2015 data
 - Both z_0 and d_0 scatter plots indicate the $z_{\mbox{\tiny Tar}}$ is at about -5 mm
- Try to use the information from these plots to fix the position of the target (use the values provided by the scatter plots as offsets and check results)
 - Inserting the z_{tar} information as millepede global offset for z translations of all sensors is not particularly useful, as this offset is absorbed by other z alignment corrections
 - Check the effect on the reconstruction if the new target position is inserted in ReconParticleDriver