Beam Center Finding

Silke Nelson

Introduction

beam center is necessary for azimuthal averaging need simple, stable method to get it from image
For most experiments, we will start with a decent guess, but reprocess later.

Extract Features

Hough Transform

Example 1 [edit]

Consider three data points, shown here as black dots.

Example: for each point in x/y space, make entries in r/phi space for all possible lines through point. Fill histogram. Find maximum/maxima.

Here:
Hough transform from x/y space to R/x_center/y_center.

Hough Transform

Find Points

xppo3016, Run 386

Select Points for fit

xppo5615 Run619

- use points in "donut" around found radii
- use ransac to find points for circle fit
- fit all point together in a fit to a common center, but different radii (one per circle candidate)

use canny algorithm from skimage.feature

Example Images.

xpph66150 Run190

Final Fit \& onwards

We developed a fairly fast and parameter free algorithm to find the beam center.

Will use the radii of the final fit to determine detector-sample distance for known sample (will need sharp circles for that)

There are two conditions where this approach fails: very faint/wide rings
data with an obvious beamstop that is not masked out
Depending on the setup with calibration samples, this may not warrant further work

Fitting - scikit-beam auto_center_

does not work at all.
looked at code: uses default canny and takes no mask (does not work well for our samplws). Then uses ransac to fit circles.
use canny with "stable" parameters \& mask.
Play with ransac: does not find our circles.
Canny results in two rings for every "real" ring. Ransac picks points from both mixed and for a set of attempts it will result in different centers.

Hough - Last iteration

And now:

use radii \& center from hough to select points in donut rings.
Ransac to reject outliers.
Optimize to fit center \& r for each ring.

Example Image

More Examples.

Backup

Threshold
Canny for Features
def
30
95
xppo5615 Run619

