Kalman Filter Pattern Recognition

* | implemented a combinatorial pattern recognition based on
the Kalman Filter track following and fitting.

* Seeds are generated from hits in 2 horizontal layers plus 3
stereo layers by a linear fit (line and parabola).
* Multiple different sets of 5 such layers are tried.

* All hit combinations in the 5 layers are tried and accepted or
rejected according mainly to how closely they extrapolate to the
origin. (No chi-square cut as this is a 0 d.o.f. fit.)

* The seeds are sorted by quality and then followed one-by-
one with the Kalman filter, working toward the origin.
* Tracks are allowed to share only a limited number of hits.

e Shared hits are reviewed at the end and dropped or reassigned if
appropriate.

* Final accepted tracks and covariance matrices are
extrapolated by Runge-Kutta integration through the non-
uniform field to the origin.



This is a silly example, with 5
particles of similar momentum
starting from the origin point.
Three of the five tracks have all
12 points and the other two are
missing just the innermost hit.

This was the first try with such a
large number of tracks, but
usually it doesn’t work this well.
Things tend to get confused in
the first layer or two.

Nevertheless, this shows that

the logic is there, although not
really tuned.

5/4/2018

-20 166

iy
FA

T

R.P. Johnson

600



Testing with 10,000 events of
two particle each, with
momentum spread around

1 GeV and launched from the
origin.

Almost all of the tracks are
found, and most have all 12
hits.

On the following page the
reconstructed helix
parameters, after swimming
to the origin, are compared
with the generated values at
the origin.

5/4/2018

10000

events

tracks

Mumber of tracks found and fitted

9000
8000
7000
6000
5000
4000
3000
2000
1000

mean=
rms= 0

counts=1

18000
16000
14000
12000
10000
8000
6000
4000
2000

tracks

Number of hits per fitted track

mean=

rms= 0.

counts=

R.P. Johnson

hits

10

12



Smoothed helix parameter drho error

Smoothed helix parameter phi0 error Smoothed helix parameter K error

1800 . 1600 1600 _
ol - R - ol N I (=%
1200 = 1000 L e
%1000 - 1 %1000 -
£ g0 | g soor {800
600 | 600 - 600 -
400 + . 400 - 400
200 200 | 200
910 —I5 0 J5 10 qu —I5 0 ; 1 in -5 0 5 10
sigmas sigmas sigmas
- o et & e The Runge-Kutta extrapolation of the covariance matrix
- mean= -0.02964 - « . . .
i e ke to the origin is not working perfectly, as the errors
Bl | ] appear to be underestimated by several percent (despite
o : being perfect at the first measuring plane).
400 - 4
200 - . Smoothed chi? of helix parameters
‘]10 ; 0 Is 10 1200 T T T T T T
e i Mes ~ 4 99476 |
Smoothed helix parameter tanl error 1000 - A L COUFI_tS=1.9686 ]
1800 T T
L n mean=_0.04036 4 800 - | ] . H ]
oo A e o Ideally this should
12001 7 g 6001 | have a mean of 5 and
1000 - = ol
£ soot 1 400 - rms Of32 T
600 - -
400 F 1 200 ]
200 4
-10 —‘5 0 _; 10 0 : : :
sigmas 0 5 10 15 20 25 30

5/4/2018

chi2

R.P. Johnson 4



Interfaces

The HPS field map is read into the class FieldMap.java. At present the
map is read from a binary disk file, but that can be changed.

The positions and orientations (alignment) of the detector planes are
loaded into the public class “SiModule.java” using the constructor, one
object per detector plane (stereo or non-stereo).

The hits (location of a hit strip in the detector frame) are loaded into
“Measurement.java” using a public method in “SiModule.java”

The public class KalmanPatRecHPS is instantiated and given an ArrayList
of SiModule representing the set of hits in the upper or lower half of
HPS. The constructor executes the pattern recognitions and fitting.

* Thus far the cuts and parameters are hard-wired into
“KalmanPatRecHPS.java” as local variables.

The found and fitted tracks are put into an ArrayList of “KalTrack.java”
objects.

“KalTrack.java” has a number of public methods for refitting tracks,
extrapolating them to the origin, etc.



Next Steps
* Work with Miriam to complete the interface with the HPS
code.

e Test with MC events and tune the parameters and
algorithms to optimize performance and execution speed.

* Tie up some loose ends. For example, “KalTrack.java” could
easily include a method to extrapolate to the
electromagnetic calorimeter, if needed.

e Test with some real data.



