Kalman Filter Pattern Recognition

* | implemented a combinatorial pattern recognition based on
the Kalman Filter track following and fitting.

* Seeds are generated from hits in 2 horizontal layers plus 3
stereo layers by a linear fit (line and parabola).
* Multiple different sets of 5 such layers are tried.

* All hit combinations in the 5 layers are tried and accepted or
rejected according mainly to how closely they extrapolate to the
origin. (No chi-square cut as this is a 0 d.o.f. fit.)

* The seeds are sorted by quality and then followed one-by-
one with the Kalman filter, working toward the origin.
* Tracks are allowed to share only a limited number of hits.

e Shared hits are reviewed at the end and dropped or reassigned if
appropriate.

* Final accepted tracks and covariance matrices are
extrapolated by Runge-Kutta integration through the non-
uniform field to the origin.



This is a silly example, with 5
particles of similar momentum
starting from the origin point.
Three of the five tracks have all
12 points and the other two are
missing just the innermost hit.

This was the first try with such a
large number of tracks, but
usually it doesn’t work this well.
Things tend to get confused in
the first layer or two.

Nevertheless, this shows that

the logic is there, although not
really tuned.
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Testing with 10,000 events of
two particle each, with
momentum spread around

1 GeV and launched from the
origin.

Almost all of the tracks are
found, and most have all 12
hits.

On the following page the
reconstructed helix
parameters, after swimming
to the origin, are compared
with the generated values at
the origin.
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Smoothed helix parameter drho error
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Interfaces

The HPS field map is read into the class FieldMap.java. At present the
map is read from a binary disk file, but that can be changed.

The positions and orientations (alignment) of the detector planes are
loaded into the public class “SiModule.java” using the constructor, one
object per detector plane (stereo or non-stereo).

The hits (location of a hit strip in the detector frame) are loaded into
“Measurement.java” using a public method in “SiModule.java”

The public class KalmanPatRecHPS is instantiated and given an ArrayList
of SiModule representing the set of hits in the upper or lower half of
HPS. The constructor executes the pattern recognitions and fitting.

* Thus far the cuts and parameters are hard-wired into
“KalmanPatRecHPS.java” as local variables.

The found and fitted tracks are put into an ArrayList of “KalTrack.java”
objects.

“KalTrack.java” has a number of public methods for refitting tracks,
extrapolating them to the origin, etc.



Next Steps
* Work with Miriam to complete the interface with the HPS
code.

e Test with MC events and tune the parameters and
algorithms to optimize performance and execution speed.

* Tie up some loose ends. For example, “KalTrack.java” could
easily include a method to extrapolate to the
electromagnetic calorimeter, if needed.

e Test with some real data.



