F7 Hands-On Handout

Martin Burtscher, Franck Cappello, Sheng Di, Hanqi Guo, Samuel Li, Xin Liang,
Peter Lindstrom, Dingwen Tao, Kento Sato, Seung Woo Son, Robert Underwood, Kai Zhao *

February 14, 2024

*names listed alphabetically

Introduction

Welcome to the FZ Developer’s meeting. During the hands-on portion, we hope that you will explore the
compressors that are most interesting to you given the overview we presented. Each section of the tutorial is
intended to be self-contained, so the order in which you visit the sections shouldn’t matter. The developers
of these compressors will be walking arround to answer questions.

You have two options to work on the hands-on: via SSH (preferred) or on your own laptop via Docker

Connecting to the Machines

We have provided a remote system that you can log into via SSH to run the hands on. This is the reccomended
way to access the tutorial. The password is CUT LENT ROVE CAL LEFT CUBA GLUE OMEN EEL BEAR GAL

ssh -p 80 exouser@10.8.0.28

Using Your Laptop/Supercomputer

We have a pre-built contianer that runs on modern versions of Linux, MacOS, and Windows. This runs
best on amd64/x86_ 64 processors (e.g. Intel/AMD processors), but it is possible run on arm64/aarch64/m
series silicon as well. Please note that you may not be able to run all compressors in this way if you lack
access to the appropriate hardware.

While the commands listed here are for podman, equivelent commands exist for Singularity, Apptainer, and
Docker.

#Linuz
sudo apt install podman #Debian/Ubuntu
sudo dnf install podman #RHEL/Fedora (probably installed)

#Windows

choco.exe install podman
podman machine init
podman machine start

#MacOS

brew install podman gemu
podman machine init
podman machine start

all platforms
podman run -it --rm --platform linux/amd64 ghcr.io/robertu94/sz-zfp-zchecker:latest

Installation via Spack/Conda

We maintain spack and in many cases conda packages for this software as well. Please ask us about this if
you need this for your environment.

Contents

1

2

3

SZ2/SZ3

cuSZ

ZFP

MGARD
SPERR

LC Framework
TEZip

DCTZ

LibPressio

12

15

23

30

32

33

20

21

22

23

1 SZ2/SZ3

contact: Kai Zhao, Sheng Di

1.1 CLI Interface (SZ2&SZ3)
print help for the sz command

sz

compress a 3D array in sz, with an absolute error bound of le-3
-f : FP32

-M ABS -A 1E-3: absolute error bound of le-3

-1 source_file : input

-z compressed_file : output

-3 500 500 100: array[100][500] [500], reverse of C sequence

sz -f -M ABS -A 1E-3 -i /usecases/Hurricane/Uf48.dat -z \
/usecases/Hurricane/Uf48.dat.sz -3 500 500 100

decompress the above data in sz, and print various statistics

-1 source_file : input, used for statistics

-s compressed_file : tnput

-z decompressed_file : output

-3 500 500 100: array[100] [500][500], reverse of C sequence

-a : print statistics

sz -f -i /usecases/Hurricane/Uf48.dat -s /usecases/Hurricane/Uf48.dat.sz -x \
/usecases/Hurricane/Uf48.dat.sz.out -3 500 500 100 -a

B OH OH R R W

the command line of sz3 is backward compatible with sz2
you can replace 'sz' with 'sz3' in the above lines to use sz3

1.2 C/C++ Interface (SZ3)

#include "SZ3/api/sz.hpp"

#compress

SZ3::Config conf (100, 500, 500); // array[100][500] [500]

conf.cmprAlgo = SZ3::ALGO_INTERP_LORENZO;

conf.errorBoundMode = SZ3::EB_ABS; // refer to def.hpp for all supported error bound mode
conf.absErrorBound = 1E-3; // absolute error bound le-3

size_t cmpSize = 100 * 500 * 500; // cmpSize is overwritten by compressed data size
/%

O@tparam T source data type

@param config compression configuration

Oparam data source data

O@param cmpSize compressed data size in bytes

Oreturn compressed data, remember to 'delete []' when the data is mo longer needed.
*/

char *cmpData = SZ_compress<float>(conf, data, cmpSize);

* % %X X %

#decompress

auto decompressedData = new float[100%¥500%500];

SZ3::Config confl;

VL]
* @param conf configuration placeholder. Overwritten by the compression configuration
* @param cmpData compressed data

mailto:kai.zhao@fsu.edu
mailto:sdi1@xanl.gov

25

26

27

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

* O@param cmpSize compressed data size in bytes
* Oparam decData pre-allocated memory space for decompressed data
*/

SZ_decompress<float>(confl, cmpData, cmpSize, decData);

1.3 Python Interface (SZ3)

#python support is experimental

#you need to locate 1) sz3c lib file and 2) pysz.py
#s52z3c 1ib can be found in your_cmake_folder/tools/sz3c/
#pysz.py can be found in sz3/tools/pysz/

import numpy as np

from pathlib import Path
from pysz import SZ
import sys

prepare your data in numpy array format
data = np.fromfile('Uf48.bin.dat', dtype=np.float32)
data = np.reshape(data, (100, 500, 500))

1lib_extention = {
"darwin": "1ibSZ3c.dylib",
"windows": "SZ3c.dll",
}.get(sys.platform, "1ibSZ3c.so")
Please change the path to the SZ dynamic library file in your system
sz = SZ("/path/to/your/sz/lib/folder".format(lib_extention))

nmnn

Compress data with SZ

:param data: original data, numpy array format, dtype is FP32 or FP64

:param eb_mode:# error bound mode, integer (0: ABS, 1:REL)

:param eb_abs: optional, abs error bound, double

:param eb_rel: optional, rel error bound, double

:param eb_pwr: optional, pwr error bound, double

:return: compressed data, numpy array format, dtype is np.uint8
compression ratio

data_cmpr, cmpr_ratio = sz.compress(data, 0, 1e-3, 0, 0)

print ("compression ratio = {:5G}".format(cmpr_ratio))

decompress, both input and outputl data are numpy array
data_dec = sz.decompress(data_cmpr, data.shape, data.dtype)

vertify
sz.verify(data, data_dec)

2 cuSZ

]
For this section you will need an NVIDIA GPU.

contact: Jiannan Tian
cuUSZ is a GPU adoption of SZ. cuSZ incorporates several practical components, including fully parallelized
prediction & error quantization stage and coarsely parallelized Huffman encoding (the released version).

2.1 CLI Interface

1. The interpretation of data shape is important to utilize the dimensional information. cuSZ puts
two ways to specify data shape,

o fastest to slowest (inner to outer loop if sequential, also CUDA dim3)
--dim3 [X]x[Y]x[Z] or --len [X]x[Y]x[Z]

o slowest to fastest (outer to inner loop if sequential)
--size [Z]x[Y]x[X]

2. Two predictors are supported:

o Lorenzo predictor of higher throughput
--predictor lorenzo

« cubic spline interpolation of higher quality (3D only)
—--predictor spline

3. Two modes are supported: abs and r2r (relative to data range).

print help for the cusz command
cusz

print even longer help for the cusz command
cusz -h

Currently, only 32-bit fp-type is supported.

To compress, -z 15 needed.

By default, Lorenzo predictor is used.

To use 3D cubic spline interpolation,

—-predictor spline should be appended in the command line.

cuszi -t £32 -m rel -e [ErrorBound] -i [/PATH/TO/DATA] --dim3 [X]x[Y]x[Z] -z --report time

To decompress, —x ©s needed

The optional --compare [/PATH/TO/DATA] can be specified to

compared the ortginal and reconstructed data.

cuszi -i [/PATH/TO/DATA] .cusza -x --report time --compare [/PATH/TO/DATA]

2.2 C/C++ Interface
|

CUSZ uses namespace psz, which stands for GPU-parallelized SZ.

mailto:jti1@iu.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

// header zone
#include "cusz.h"
#include "context.h"

pszheader header; // declare metadata
uint8_t* ptr_compressed; // to access internal compressor buffer
size_t compressed_len; // to be changed by compressor

T *d_uncomp, *h_uncomp;
T *d_decomp, *h_decomp;

auto oribytes = sizeof (T) * len;
cudaMalloc(&d_uncomp, oribytes), cudaMallocHost(&h_uncomp, oribytes);
cudaMalloc(&d_decomp, oribytes), cudaMallocHost(&h_decomp, oribytes);

// User handles loading from filesystem & transferring to device.
// to::read_binary_to_array(fname, h_uncomp, len);
// cudaMemcpy (d_uncomp, h_uncomp, oribytes, cudaMemcpyHostToDevice);

// initialize CUDA stream
cudaStream_t stream; cudaStreamCreate(&stream) ;

// use default setup for cuSZ framework
pszframe* work = pszdefault_framework();

// alternative finer-grained setup
// pszframe* work = new pszframe{

// .predictor = pszpredictor{.type = Lorenzol},
// .quantizer = pszquantizer{.radius = 512},
// .hfcoder = pszhfrc{.style = Coarsel},

// .maz_outlier_percent = 20};

pszcompressor* comp = psz_create(work, F4);

// specify compression mode: Rel or Abs

// specify error bound: any fractional number
pszctx* ctx = new pszctx{.mode = Rel, .eb = 2.4e-4};
// ¢, Yy, 2z, w (w is a placeholder for future use)
pszlen uncomp_len = pszlen{3600, 1800, 1, 1};
pszlen decomp_len = uncomp_len;

// C++ time-record type
psz::TimeRecord compress_timerecord;
psz: :TimeRecord decompress_timerecord;

{ // compression scope

psz_compress_init(comp, uncomp_len, ctx);

psz_compress (comp, d_uncomp, uncomp_len, &ptr_compressed, &compressed_len,
(void*)&compress_timerecord, stream);

// User can interpret the collected time information in other ways.
psz: :TimeRecordViewer: :view_compression(
&compress_timerecord, oribytes, compressed_len);

&header,

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

// verify header

printf ("header.%-*s : %p\n", 12, "(addr)", (void*)&header);

printf ("header.’-*s : Y%u, %u, %u\n", 12, "{x,y,z}", header.x, header.y,
header.z) ;

printf ("header.-*s : %lu\n", 12, "filesize", psz_utils::filesize(&header));

} // end of compression scope

// If needed, User should perform a memcopy to transfer ‘ptr_compressed’

// before “compressor is destroyed.

uint8_t* compressed_buf;

cudaMalloc (&compressed_buf, compressed_len);

cudaMemcpy (compressed_buf, ptr_compressed, compressed_len, cudaMemcpyDeviceToDevice);

{ // decompression scope

psz_decompress_init(comp, &header);

psz_decompress(
comp, ptr_compressed, compressed_len, d_decomp, decomp_len,
(void#*)&decompress_timerecord, stream);

// print kernel time records

psz: :TimeRecordViewer: :view_decompression (
&decompress_timerecord, oribytes);

} // end of decompression scope

// demo: offline checking (de)compression quality.
psz::eval_dataquality_gpu(d_decomp, d_uncomp, len, compressed_len);

psz_release(comp);
cudaFree (compressed_buf) ;
cudaFree(d_uncomp), cudaFreeHost (h_uncomp) ;

cudaFree(d_decomp), cudaFreeHost (h_decomp);

cudaStreamDestroy(stream) ;

19

20

21

22

23

3 ZFP

contact: Peter Lindstrom
ZFP is a compressed format for representing multidimensional floating-point and integer arrays. ZFp provides
compressed-array classes that support high throughput read and write random access to individual array
elements. ZFP also supports serial and parallel compression of whole arrays, e.g., for applications that
read and write large data sets to and from disk. For documentation, source code, and other resources, see
https://zfp.11lnl.gov.

3.1 CLI Interface

print help for the zfp command
zfp

load a 3d array of floats, use zfp with an absolute error bound of le-4,
and collect and print various statistics
zfp -s -i /usecases/Hurricane/Uf48.dat -f -3 500 500 100 -a le-4

use zfp's fized-rate mode to compress to 13 bits/value
zfp -s -i /usecases/Hurricane/Uf48.dat -f -3 500 500 100 -r 13

use zfp's fized-precision mode with 10 bits of precision
zfp -s -i /usecases/Hurricane/Uf48.dat -f -3 500 500 100 -p 10

use zfp's reversible (lossless) mode to compress to stdout, decompress from stdin,
and encode the array size and compression mode in a header

zfp -h -i /usecases/Hurricane/Uf48.dat -f -3 500 500 100 -R -z - | \

zfp -h -z - -o /tmp/Uf48.out

3.2 C Interface

#include "zfp.h"

// input: (double* array, size_t nz, size_t ny, size_t nz, double tolerance)
// initialize metadata for the 3D array alnz] [ny] [nz]

zfp_type type = zfp_type_double; // array scalar type
zfp_field* field = zfp_field_3d(array, type, nx, ny, nz); // array metadata

// initialize metadata for a compressed stream

zfp_stream* zfp = zfp_stream_open(NULL); // compressed stream and parameters
zfp_stream_set_accuracy(zfp, tolerance); // set tolerance for fized-accuracy mode
// zfp_stream_set_precision(zfp, precision); // alternative: fized-precision mode

// zfp_stream_set_rate(zfp, rate, type, 3, zfp_false); // alternative: fized-rate mode

// zfp_stream_set_reversible(zfp); // alternative: lossless mode

// allocate buffer for compressed data
size_t bufsize = zfp_stream_maximum_size(zfp, field); // capacity of compressed buffer
void* buffer = malloc(bufsize); // storage for compressed stream

// associate bit stream with allocated buffer
bitstream* stream = stream_open(buffer, bufsize); // bit stream to compress to
zfp_stream_set_bit_stream(zfp, stream); // associate with compressed stream

mailto:pl@llnl.gov
https://zfp.llnl.gov

24

25

26

27

28

29

30

// compress array
zfp_stream_rewind (zfp);
size_t zfpsize = zfp_compress(zfp, field);

// decompress array
zfp_stream_rewind(zfp) ;

// rewind stream to beginning
// return value is compressed byte size

// rewind stream for decompression

assert(zfp_decompress(zfp, field) == zfpsize); // decompress stream

3.3 Python Interface
Install zFp’s Python bindings using pip3 install --user zfpy.

import zfpy
import numpy as np

initialize 100 * 80 NumPy array to Hilbert matriz
my_array = np.array([1/(1+x+y) for y in range(100) for x in range(80)]).reshape((100, 80))

compress array to within an absolute error tolerance of le-6
compressed_data = zfpy.compress_numpy(my_array, tolerance=1e-6)

20

21

22

23

decompress to another NumPy array

decompressed_array = zfpy.decompress_numpy(compressed_data)

verify

np.testing.assert_allclose(my_array, decompressed_array, atol=1e-6)

that error tolerance is satisfied

compression ratio
decompressed_array.nbytes / len(compressed_data)

3.4 C+4+ Interface

#include
#include
#include
#include
#include

double f(size_t x, size_t y) { return 1. / (1 + x + y); }

<climits>

<cmath>

<iostream>
"zfp/array2. hpp"
"zfp/codec/gencodec.hpp"

template <class Array>
void evaluate(Array& a, std::string name)

{

// initialize array to Hilbert matriz
for (size_t y = 0; y < a.size_y(Q; y++)
for (size_t x = 0; x < a.size_x(); x++)
a(x, y) = £(x, y);

// optional: compress any cached data
a.flush_cache();

// compute error

double abserr = 0
double relerr = 0O;
for (size_t y =0

)

; y < a.size_y(); y++)

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

'S
<

47

48

49

50

51

52

53

54

55

56

57

for (size_t x = 0; x < a.size_x(); x++) {
double d = std::abs(a(x, y) - f(x, y));
abserr += d;
relerr += d / std::abs(f(x, y));

}
abserr /=
relerr /=
// output
std: :cout
std::cout
std::cout

}

int main()

{

a.size();

a.size();

error

<< std::defaultfloat << a.rate() << "-bit " << name << " array" << std::endl;
<< " mean absolute error = " << std::scientific << abserr << std::endl;

<< " mean relative error = " << std::scientific << relerr << std::endl;

const size_t nx = 60; // array width

const size_t ny

100; // array height

// scalar type for uncompressed array
typedef float real; // single precision

//typedef __

fp16 real; // alternative: half precision

const double rate = sizeof(real) * CHAR_BIT; // storage size in bits/value

// uncompressed 2D array storing scalars of type real
zfp::array2< double, zfp::codec::generic2<double, real> > a(nx, ny, rate);
evaluate(a, "uncompressed");

// zfp compressed 2D array with equal storage size
zfp: :array2<double> b(nx, ny, rate);
evaluate(b, "zfp");

return O;

4 MGARD

Contact: Xin Liang, Jieyang Chen

MGARD is a highly functional, performant, portable, and extendable compressor for scientific data. Built
upon wavelet and finite element theories, MGARD features rigorous error controls on both raw data and
derived quantities, diverse functionalities including both compression and refactoring, utility support for both
uniform/non-uniform structured data and unstructured data, and unified interfaces on CPU and GPUs. For
detailed documentation, publication, and source code, please refer to https://github.com/CODARcode/
MGARD.

4.1 CLI Interface

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

print help for the mgard-zr command

mgard-x

Options

-z: compress data

-1 <path to data file to be compressed>
-c <path to compressed file>
-t <s|d>: data type (s: single; d:double)

<ndim>: total number of dimensions
[dim1]: slowest dimension
[dim2] : 2nd slowest dimension

[dimN] : fastest dimension

<path to coordinate file>

<abs|rel>: error bound mode (abs: absolute; rel: relative)

<error>: error bound

<smoothness>: smoothness parameter

choose lossless compressor (O:Huffman 1:Huffman+LZ4 2:Huffman+Zstd)
<auto|serial|openmp|cudalhip|sycl>: device type

enable verbose (show timing and statistics)

-x: decompress data

Example:
mgard-x -z

<path to compressed file>

<path to decompressed file>
<auto|serial|cudalhip>: device type

enable verbose (show timing and statistics)

compress a 3D array in MGARD with an absolute error bound of le-3

-i /usecases/Hurricane/Uf48.dat -c /usecases/Hurricane/Uf48.dat.mgard -t s -n 3 100 500 500

-s 0 -1 2 -d auto —-m abs -e 1e-3

Exzample:
mgard-x -Xx

Example:

mdr-x -z -i /usecases/Hurricane/Uf48.dat -c refactored.mgard -t s -n 3 100 500 500 -1 2 -h 1 -d auto

Retrieve

mdr-x -x -c refactored.mgard -o /usecases/Hurricane/Uf48.dat.mgard.out -a /usecases/Hurricane/Uf48.dat

decompress the 3D array

-c /usecases/Hurricane/Uf48.dat.mgard -o /usecases/Hurricane/Uf48.dat.mgard.out -d auto

refactor a 3D array

and reconstruct the data under absolute error bound 1e-3

mailto:xliang@uky.edu
jchen3@uab.edu
https://github.com/CODARcode/MGARD
https://github.com/CODARcode/MGARD

20

21

22

23

24

4.2 C/C+H++ Interface

MGARD uses namespace mgard_x with a sub-namespace MDR for refactoring APIs.

High-level APIs for error-controlled compression and decompression:

#include "mgard/compress_z.

// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std::vector<mgard_x::SIZE>
mgard_x::SIZE in_byte = nl
mgard_x::SIZE out_byte;

hpp n

shape{nl, n2, n3};

* n2 * n3 * sizeof (double);

//... load data into in_array

double *in_array = ...;

void *compressed_array = NULL;

void *decompressed_array =
// tol: error tolerance
// s: smoothness parameter
double tol = 0.01, s = O;

// MGARD config parameters
mgard_x::Config config;

NULL;

// Compressing with high-level API

mgard_x: :compress (num_dims,

// Decompressing with high

mgard_x: :decompress (compressed_array, out_byte, decompressed_array,

High-level APIs for refactoring and error-controlled progressive retrieval:

#include "mgard/mdr_z.hpp"

// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std: :vector<mgard_x::SIZE>
mgard_x::SIZE in_byte = nl
mgard_x: :SIZE out_byte;

mgard_x::data_type: :Double, shape, tol,

level API

shape{nl, n2, n3};

* n2 * n3 * sizeof (double);

//... load data into in_array

double *in_array = ...;

mgard_x::Config config;

mgard_x: :MDR: :RefactoredMetadata refactored_metadata;

mgard_x: :MDR: :RefactoredData refactored_data;

// Refactor with high-level API

mgard_x: :MDR: :MDRefactor (D,

mgard_x::data_type: :Double, shape, in_array, refactored_metadata,

refactored_data, config, false);

// Save refactored_metadata and refactored_data to files

s, mgard_x::error_bound_type: :REL,

config, false);

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

mgard_x: :MDR: :ReconstructedData reconstructed_data;
// Read in refactored_metadata from file

// Progressively reconstruct for each error bound
for (double tol : tolerances) {
// Specify error bound and smoothness parameter for each subdomain
for (auto &metadata : refactored_metadata.metadata) {
metadata.requested_tol = tol;
metadata.requested_s = s;
}
// Determine required data components for reconstruction
mgard_x: :MDR: :MDRequest (refactored_metadata, config);
// Read in required data components from files

// Reconstruct with high-level API
mgard_x: :MDR: :MDReconstruct (refactored_metadata, refactored_data, reconstructed_data,
config, false, original_data);

// reconstructed_data now contains progressively reconstructed data
double out_data = reconstructed_data.data;

5 SPERR

Contact: Samuel Li (shaomeng@ucar.edu)
Repo: github.com/NCAR/SPERR/
Wiki: github.com/NCAR/SPERR/wiki

SPERR . uses wavelet transforms to decorrelate the data, encodes the quantized coefficients, and explicitly
corrects any data point exceeding a prescribed point-wise error (PWE) tolerance. Most often, SPERR
produces the smallest compressed bitstream honoring a PWE tolerance.

A SPERR bitstream can be used to reconstruct the data fields in two additional fashions: flexible-rate
decoding and multi-resolution decoding.

o Flexible-rate decoding: any prefix of a SPERR bitstream (i.e., a sub-bitstream that starts from the
very beginning) produced by a simple truncation is still valid to reconstruct the data field, though at
a lower quality. This ability is useful for applications such as tiered storage and data sharing over slow
connections, to name a few.

e Multi-resolution decoding: a hierarchy of the data field with coarsened resolutions can be obtained
together with the native resolution. This ability is useful for quick analyses with limited resources.

On a Unix-like system with a working C++ compiler and CMake, SPERR can be built from source
and made available to users in just a few commands. See this README for detail.

5.1 CLI Interface

Upon a successful build, four CLI utility programs are placed in the ./bin/ directory; three of them are most
relevant here: sperr2d, sperr3d, and sperr3d_trunc. Each of them can be invoked with the -h option to
display a help message.

5.1.1 sperr2d

sperr2d is responsible for compressing and decompressing a 2D data slice. Its help message contains all the
options sperr2d takes:

$./bin/sperr2d -h

Usage: ./bin/sperr2d [OPTIONS] [filename]

Positionals:
filename TEXT:FILE A data slice to be compressed, or
a bitstream to be decompressed.
Options:
-h,--help Print this help message and exit

Execution settings:
-c Excludes: -d Perform a compression task.
-d Excludes: -c Perform a decompression task.

Input properties:
--ftype UINT Specify the input float type in bits. Must be 32 or 64.
--dims [UINT,UINT] Dimensions of the input slice. E.g., ~--dims 128 128"
(The fastest-varying dimension appears first.)

Output settings:
--bitstream TEXT Output compressed bitstream.

shaomeng@ucar.edu
https://github.com/NCAR/SPERR/
https://github.com/NCAR/SPERR/wiki
https://github.com/NCAR/SPERR?tab=readme-ov-file#quick-build

23

24

25

27

28

30

31

32

33

34

--decomp_f TEXT Output decompressed slice in £32 precision.

--decomp_d TEXT Output decompressed slice in f64 precision.

--decomp_lowres_f TEXT Output lower resolutions of the decompressed slice in £32 precision.
--decomp_lowres_d TEXT Output lower resolutions of the decompressed slice in f64 precision.
--print_stats Needs: -c Show statistics measuring the compression quality.

Compression settings:
--pwe FLOAT Excludes: --psnr —--bpp
Maximum point-wise error (PWE) tolerance.
--psnr FLOAT Excludes: --pwe —-bpp
Target PSNR to achieve.
—-bpp FLOAT:FLOAT in [0 - 64] Excludes: --pwe —-psnr
Target bit-per-pixel (bpp) to achieve.

Examples:

1. Compress a 2D slice in 512 x 512 dimension, single-precision floats with a PWE tolerance of 10~2:
./bin/sperr2d -c --ftype 32 --dims 512 512 --pwe le-2 \
--bitstream ./out.stream ./in.f32

2. Perform the compression task described above, plus also write out the compress-decompressed slice,
and finally print statistics measuring the compression quality:
./bin/sperr2d -c --ftype 32 --dims 512 512 --pwe le-2 \
--decomp_f ./out.decomp --print_stats --bitstream ./out.stream ./in.f32

3. Decompress from a SPERR bitstream, and write out the slice in native and coarsened resolutions:
./bin/sperr2d -d --decomp_f ./out.decomp --decomp_lowres_f ./out.lowres ./sperr.stream
In this example, the output file out.decomp will be of the native resolution, and six other files
(out.lowres.256x256, out.lowres.128x128, etc.) will also be produced with their filenames in-
dicating the coarsened resolution.

5.1.2 sperr3d

sperr3d is responsible for compressing and decompressing a 2D data volume. Compared to sperr2d which
compresses the input 2D slice as a whole, sperr3d divides an input 3D volume into smaller chunks, and
then compresses each chunk individually. This treatment allows for compressing and decompressing all the
small chunks in parallel. sperr3d uses 256% as the default chunk dimension, but any number in the order
of low hundreds and preferably divides the full volume is a good number. Command line options --chunks
and --omp control the chunking and parallel execution behavior respectivelly.

The help message of sperr3d details all the options it takes:

$./bin/sperr3d -h

Usage: ./bin/sperr3d [OPTIONS] [filename]

Positionals:
filename TEXT:FILE A data volume to be compressed, or
a bitstream to be decompressed.
Options:
-h,--help Print this help message and exit

Execution settings:
-c Excludes: -d Perform a compression task.
-d Excludes: -c Perform a decompression task.
—--omp UINT Number of OpenMP threads to use. Default (or 0) to use all.

17 Input properties (for compression):

18 --ftype UINT Specify the input float type in bits. Must be 32 or 64.
19 --dims [UINT,UINT,UINT] Dimensions of the input volume. E.g., ~--dims 128 128 128~
20 (The fastest-varying dimension appears first.)

22 Output settings:

23 --bitstream TEXT Output compressed bitstream.

24 -—-decomp_f TEXT Output decompressed volume in f£32 precision.

25 --decomp_d TEXT Output decompressed volume in f64 precision.

26 --decomp_lowres_f TEXT Output lower resolutions of the decompressed volume in £32 precision.
27 --decomp_lowres_d TEXT Output lower resolutions of the decompressed volume in f64 precision.
28 --print_stats Needs: -c Print statistics measuring the compression quality.

29

30 Compression settings:

31 --chunks [UINT,UINT,UINT] Dimensions of the preferred chunk size. Default: 256 256 256
32 (Volume dims donﬂt need to be divisible by these chunk dims.)
33 --pwe FLOAT Excludes: --psnr —-bpp
34 Maximum point-wise error (PWE) tolerance.
35 --psnr FLOAT Excludes: --pwe —-bpp
36 Target PSNR to achieve.
a7 —-bpp FLOAT:FLOAT in [0 - 64] Excludes: --pwe —-psnr
38 Target bit-per-pixel (bpp) to achieve.
Examples:

1. Compress a 3D volume in 384 x 384 x 256 dimension, double-precision floats, using a PWE tolerance
of 107 and chunks of 192 x 192 x 256:
./bin/sperr3d -c --omp 4 --ftype 64 --dims 384 384 256 --chunks 192 192 256 \
--pwe le-9 --bitstream ./out.stream ./in.f64

2. Perform the compression task described above, plus also write out the compress-decompressed volume,
and finally print statistics measuring the compression quality:
./bin/sperr3d -c --omp 4 --ftype 64 --dims 384 384 256 --chunks 192 192 256 \
--pwe le-9 --decomp_d ./out.decomp --print_stats --bitstream ./out.stream ./in.f64

3. Decompress from a SPERR bitstream, and write out the volume in native and coarsened resolutions:
./bin/sperr3d -d --decomp_d ./out.decomp --decomp_lowres_d ./out.lowres ./sperr.stream
In this example, the output file out.decomp will be of the native resolution, and five other files
(out.lowres.192x192x128, out.lowres.96x96x64, etc.) will also be produced with their file-
names indicating the coarsened resolution.

To support multi-resolution decoding in 3D cases, the individual chunks (--chunks) need to 1) approx-
imate a cube, so that there are the same number of wavelet transforms performed on each dimension,
and 2) divide the full volume in each dimension.

5.1.3 sperr3d_trunc

sperr3d_trunc is responsible for properly truncating a multi-chunked 3D bitstream, i.e., locating the offset
of each chunk in a bitstream, and truncating each chunk individually.
The help message of sperr3d_trunc details its options:

1 $./bin/sperr3d_trunc -h

s Usage: ./bin/sperr3d_trunc [OPTIONS] [filename]

Positionals:

filename TEXT:FILE The original SPERR3D bitstream to be truncated.
Options:
-h,--help Print this help message and exit

Truncation settings:
—-—pct UINT REQUIRED Percentage (1--100) of the original bitstream to truncate.
—--omp UINT Number of OpenMP threads to use. Default (or 0) to use all.

Output settings:
-o TEXT Write out the truncated bitstream.

Input settings:

--orig32 TEXT Original raw data in 32-bit precision to calculate compression
quality using the truncated bitstream.
--orig64 TEXT Original raw data in 64-bit precision to calculate compression

quality using the truncated bitstream.

Examples:

1. Produce a truncated version of a bitstream using 10% of the original length:
./bin/sperr3d_trunc --pct 10 -o ./stream.10 ./bitstream

2. Perform the task above, plus evaluate compression quality using the truncated bitstream:
./bin/sperr3d_trunc --pct 10 -o ./stream.10 --orig64 ./data.f64 ./bitstream

SPERR bitstreams without using multi-chunks (i.e., ——dims equals -—chunks in 3D, and all 2D cases)
can safely be truncated by any tool (e.g., head on Linux), not necessarily using sperr3d_trunc.

5.2 C++ Interface
5.2.1 2D Compression and Decompression

C++ class sperr: :SPECK2D_FLT is responsible for 2D compression and decompression. The sample code
walks through necessary steps to perform a compression and decompression task, and a more concrete
example can be found here.

/7’

// Example of using a sperr::SPECK2D FLT() to compress a 2D slice.
// This is a 6-step process.

/7

#include "SPECK2D FLT.h"

// Step 1: create an encoder:
auto encoder = sperr::SPECK2D_FLT();

// Step 2: specify the 2D slice dimension (the third dimension is left with 1):
encoder.set_dims ({128, 128, 1});

// Step 3: copy over the input data from a raw pointer (float* or double*):
encoder.copy_data(ptr, 16'384); // 16,384 is the number of wvalues.

// Step 3 alternative: one can hand a memory buffer to the encoder to avotid a memory copy;
// use either version is cool.

https://github.com/NCAR/SPERR/blob/main/utilities/sperr2d.cpp

20

21

22

23

24

25

26

27

28

29

30

19

20

21

22

23

24

25

encoder.take_data(std: :move(input)); // input is of type std::vector<doubles>.

// Step 4: specify the compression quality measured in one of three metrics;
// only the last invoked quality metric is honored.

encoder.set_tolerance(le-9); // PWE tolerance = 1e-9
encoder.set_bitrate(2.2); // Target bitrate = 2.2
encoder.set_psnr(102.2); // Target PSNR = 102.2

// Step 5: perform the compression task:
encoder. compress () ;

// Step 6: retrieve the compressed bitstream:
auto bitstream = std::vector<uint8_t>();
encoder.append_encoded_bitstream(bitstream) ;

//

// Ezample of using a sperr::SPECK2D_FLT() to decompress a bitstream.
// This is a 5-step process.

/7’

#include "SPECK2D_FLT.h"

// Step 1: create a decoder:
auto decoder = sperr::SPECK2D_FLT();

// Step 2: specify the 2D slice dimension (the third dimension is left with 1):
// This information is often saved once somewhere for many same-sized slices.
decoder.set_dims ({128, 128, 1});

// Step 3: pass in the compressed bitstream as a raw pointer (uint8_t*):
decoder.use_bitstream(ptr, 16'384); // 16,38/ is the length of the bitstream.

// Step 4: perform the decompression task:
decoder.decompress(multi_res); // a boolean, if to enable multi-resolution decoding

// Step 5: retrieve the decompressed wvolume:

std: :vector<double> vol = decoder.view_decoded_data();

auto hierarchy = decoder.view_hierarchy(); // if multi-resolution was enabled

// Step 5 alternative: one can take ownership of the data buffer to avoid a memory copy.
std: :vector<double> vol = decoder.release_decoded_data();

auto hierarchy = decoder.release_hierarchy(); // i¢f multi-resolution was enabled

5.2.2 3D Compression and Decompression

C++ class sperr: :SPERR3D_OMP_C is responsible for 3D compression, and sperr::SPERR3D_OMP_D is re-
sponsible for 3D decompression. The sample code walks through necessary steps to perform a compression
and decompression task, and a more concrete example can be found here.

//
// Ezample of using a sperr::SPERR3D_OMP_C() to compress a 3D wvolume.
// This is a 6-step process.

/7
#include "SPERR3D_OMP_C.h"

// Step 1: create an encoder:
auto encoder = sperr::SPERR3D_OMP_C();

https://github.com/NCAR/SPERR/blob/main/utilities/sperr3d.cpp

20

21

22

23

24

25

26

27

28

19

20

21

22

23

24

25

26

// Step 2: specify the volume and chunk dimensions, respectively:
encoder.set_dims_and chunks ({384, 384, 256}, {192, 192, 128});

// Step 3: specify the number of OpenMP threads to use:
encoder.set_num_threads(4);

// Step 4: specify the compression quality measured in one of three metrics;
// only the last invoked quality metric is honored.

encoder.set_tolerance(le-9); // PWE tolerance = 1e-9
encoder.set_bitrate(2.2); // Target bitrate = 2.2
encoder.set_psnr(102.2); // Target PSNR = 102.2

// Step 5: perform the compression task:

// The input data is passed in in the form of a Taw pointer (float* or doublex),
// and the total number of wvalues will be passed in here too.
encoder.compress (ptr, 384 * 384 * 256);

// Step 6: retrieve the compressed bitstream:
std: :vector<uint8_t> stream = encoder.get_encoded_bitstream();

//

// Ezample of using a sperr::SPERR3D_OMP_D() to decompress a bitstream.
// This is a 5-step process.

/7

#include "SPERR3D _OMP_D.h"

// Step 1: create a decoder:
auto decoder = sperr::SPERR3D_OMP_D();

// Step 2: specify the number of OpenMP threads to use:
decoder.set_num_threads(4);

// Step 3: pass in the compressed bitstream as a raw pointer (uint8_t*):
decoder.use_bitstream(ptr, 16'384); // 16,38/ is the length of the bitstream.

// Step 4: perform the decompression task:
// Note that the pointer to the bitstream is passed in again!
decoder.decompress(ptr, multi_res); // a boolean, if to enable multi-resolution decoding

// Step 5: retrieve the decompressed wvolume:

auto [dimx, dimy, dimz] = decoder.get_dims(); // dimension of the wvolume

std: :vector<double> vol = decoder.view_decoded_data();

auto hierarchy = decoder.view_hierarchy(); // if multi-resolution was enabled

// Step 5 alternative: one can take ownership of the data buffer to avoid memory copies.
std: :vector<double> vol = decoder.release_decoded_data();

auto hierarchy = decoder.release_hierarchy(); // i¢f multi-resolution was enabled

To achieve higher performance with repeated compression and decompression tasks, the encoder and
decoder objects are better to be re-used rather than repeatedly destroyed and created.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

5.3 C Interface

SPERR provides a C wrapper with a set of C functions. All of the C interface is in the header file
SPERR_C_API.h, which itself documents the C functions and parameters, etc. The following example code
walks through key steps to use the C API to perform compression and decompression, while more concrete
examples are available for 2D and 3D cases.

5.3.1 Example: 2D

/*
* Example of using the SPERR C API to perform 2D compression and decompression tasks.
*/

#include "SPERR_C _API.h"

/* Step 1: create wvartables to keep the output: */
void* stream = NULL; /* caller ts responsible for free'ing it after use. */
size_t stream_len = 0;

/* Step 2: call the 2D compression function:
* Assume that we have a buffer of 128 * 128 floats (in float* type) to be compressed,
* using PWE tolerance = le-3.

*/

int ret = sperr_comp_2d(ptr, /* memory buffer containing the input */
1, /* the input is of type float; O means double. */
128, /* dimz */
128, /* dimy */
3, /* compression mode; 3 means fized PWE */
le-3, /* actual PWE tolerance */
0, /* not using a header for the output bitstream */
&stream, /* will hold the compressed bitstream */
&stream_len); /* length of the compressed bitstream */

assert(ret == 0);

/*

* Now that the 2D compression is completed, one can decompress the bitstream to
* retrieve the raw values, as the rest of this example shows.

*/

/* Step 3: create a pointer to hold the decompressed values: */
void* output = NULL; /* caller is responsible for free'ing it after use. */

/* Step 4: call the 2D decompression function: */

int ret2 = sperr_decomp_2d(stream, /* compressed bitstream */
stream_len, /* compressed bitstream length */
1, /* decompress to floats. O means to doubles. */
128, /* dimz */
128, /* dimy */
&output) ; /% decompressed data ts stored here */
assert(ret2 == 0);
free(output); /* cleanup */

free(stream); /* cleanup */

https://github.com/NCAR/SPERR/blob/main/include/SPERR_C_API.h
https://github.com/NCAR/SPERR/blob/main/examples/C_API/2d.c
https://github.com/NCAR/SPERR/blob/main/examples/C_API/3d.c

5.3.2 Example: 3D

1 /*

2 * Example of using the SPERR C API to perform 3D compression and decompression tasks.
3 */

4 #include "SPERR_C_API.h"

6 /* Step 1: create wvariables to keep the output: */
7 void*x stream = NULL; /* caller ts responsible for free'ing it after use. */
s size_t stream_len = 0;

10 /* Step 2: call the 3D compression function:
11 * Assume that we have a buffer of 25673 floats (in float* type) to be compressed,

12 * using PWE tolerance = 1e-3 and chunk dimension of 12873.

13 */

14 int ret = sperr_comp_3d(ptr, /* memory buffer containing the input */
15 1, /* the input is of type float; O means double. */
16 256, /* dimz */

17 256, /% dimy */

18 256, /* dimz */

10 128, /* chunk_z */

20 128, /* chunk_y */

21 128, /* chunk_z */

22 3, /* compression mode; 3 means fized PWE */
23 le-3, /* actual PWE tolerance */

24 4, /* use 4 OpenMP threads */

25 &stream, /* will hold the compressed bitstream */
26 &stream_len); /* length of the compressed bitstream */
27 assert(ret == 0);

28

29 /%

30 * Now that the 3D compression is completed, one can decompress the bitstream to
31 * retrieve the raw values, as the rest of this example shows.

32 */

33

sa /* Step 3: create a pointer to hold the decompressed values,

35 * and also wvariables to hold the volume dimensions.

36 */

37 void* output = NULL; /* caller is responsible for free'ing it after use. */
3s size_t dimx = 0, dimy = 0, dimz = O;
39

w0 /% Step 4: call the 3D decompression function: */

41 int ret2 = sperr_decomp_3d(stream, /* compressed bitstream */

42 stream_len, /* compressed bitstream length */

43 1, /* decompress to floats. O means to doubles. */
44 4, /* use 4 OpenMP threads */

15 &dimx, /* dimz of the decompressed wvolume */

16 &dimy, /* dimy of the decompressed wvolume */

a7 &dimz, /* dimz of the decompressed volume */

48 &output) ; /* decompressed data ts stored here */

10 assert(ret2 == 0);

so free(output); /* cleanup */

51 free(stream); /* cleanup */

6 LC Framework

contact: Martin Burtscher

LC is a framework for automatically generating high-speed lossless and guaranteed-error-bounded lossy data
compression and decompression algorithms. It supports CPUs and GPUs.

The framework code and tutorial are available at https://github.com/burtscher/LC-framework/

6.1 Overview

LC consists of the following three parts:
o Component library
e Preprocessor library
e Framework

Both libraries contain separate encoders and decoders for CPU and GPU execution. The user can extend
these libraries. The framework takes preprocessors and components from these libraries and chains them into
a pipeline to build a compression algorithm. It similarly chains the corresponding decoders in the opposite
order to build the matching decompression algorithm. Moreover, the framework can automatically search
for effective algorithms for a given input file or set of files by testing user-selected sets of components in each
pipeline stage.

6.2 Quick-Start Guide and Tutorial

6.2.1 Installation

To download LC, run the following Linux commands:

git clone https://github.com/burtscher/LC-framework.git
cd LC-framework/

If you want to run LC on the CPU, generate the framework as follows:
./generate_Host_LC-Framework.py

If, instead, you want to run LC on the GPU, generate the framework as follows:
./generate_Device_LC-Framework.py

In either case, run the printed command to compile the generated code. For the CPU, use:

gt++ -03 -march=native -fopenmp -DUSE_CPU -I. -std=c++17 -o lc lc.cpp

For the GPU, use:

nvcc -03 -arch=sm_70 -DUSE_GPU -Xcompiler "-03 -march=native -fopenmp" -I. -o lc lc.cu

You may have to adjust these commands and flags to your system and compiler. For instance, the sm_ 70
should be changed to match your GPU’s compute capability.

The generate_ Hybrid_LC-Framework.py script is only for testing and should not be used as it generates
slow code.

mailto:burtscher@txstate.edu
https://github.com/burtscher/LC-framework/

6.2.2 Usage Examples for Lossless Compression Algorithms

The following examples assume you have a file called input.dat in the current directory and want to find a
good compression algorithm for it. See below for a description of the available preprocessors and components.
Assume you believe that using bit shuffling (BIT) and run-length encoding (RLE) at 4-byte granularity make
a good compressor. Then you can see how well it compresses by entering the following command (note the
two pairs of quotes):

./lc input.dat CR "" "BIT_4 RLE_4"

This will produce output that lists the compression ratio at the end. If you want to see whether running the
RLE component at 1-byte granularity performs better, try:

./lc input.dat CR "" "BIT_4 RLE_1"
To find out which components (and preprocessors) are available, simply run:
./1lc

If you want to see more stats on the input and output data as well as throughput information in addition
to the compression ratio, switch the mode from CR to AL:

./lc input.dat AL "" "BIT_4 RLE_1"

Note that using AL also turns on verification to make sure the decompressed data is bit-by-bit equivalent to
the original data.

One of the key strengths of L.C is its ability to automatically search for a good compression algorithm. For
example, if you want LC to try all available components in the second stage, type:

./lc input.dat CR "" "BIT_4 .+"

The “+7 is a regular expression that matches the names of all components in the library. You can use it to
select any subset of the available components. Of course, you can also use a regular expression for the first
pipeline stage by entering:

./lc input.dat CR "" ".+ .+"
This is not limited to two stages. To search for the best 3-stage pipeline, use:
./1lc input.dat CR "" ".+ .+ .+"

Note that the search time increases exponentially with the number of stages. Before you perform a search,
you can check the size of the search space using the PR mode as follows:

./lc input.dat PR "" ".+ .+ .+ .+"

The output lists the number of algorithms that will be tested as well as which components will be considered
in each pipeline stage. If this number is too large, i.e., the search would take too long, try reducing the
search space by limiting the number of components to be considered:

./lc input.dat CR "" "DIFF_4 .+ .+ R.+|C.+|H.+"

If available, we recommend using the GPU version of LC as it tends to be much faster than the CPU version.
To further speed up the search, LC includes a genetic algorithm (GA) to quickly search for a good but not
necessarily the best algorithm. If you want to run the GA to find a good pipeline with 5 stages, enter the
following command:

./scripts/ga_search.py -s 5 input.dat

If you are interested in the throughput in addition to the compression ratio, use the EX mode of LC like
this:

./lc input.dat EX "" ".+ .+"

The output includes the Pareto front at the end, allowing the user to pick the best algorithm for a given
compression or decompression throughput. The six columns list the algorithm, the compression ratio, the
CPU compression throughput, the CPU decompression throughput, the GPU compression throughput, and
the GPU decompression throughput. The throughputs are given in gigabytes per second.

All CR and EX runs with more than one algorithm also write their results to a CSV file that can be opened
with most spreadsheet applications to view and postprocess the results.

EX- and AL-runs with one algorithm write the compressed data to a file called LC.encoded and the decom-
pressed data to a file called LC.decoded.

In summary, LC supports the following modes:

e AL: This mode provides the most detailed output but only works for a single pipeline.
e PR: This mode prints the search space and then quits.
e CR: This mode searches for the best compressing algorithm.

o EX: This mode searches for the algorithms on the Pareto front, taking into account both the compres-
sion ratio and the compression/decompression throughput.

e TS: This mode is for testing only and should not be used.

6.2.3 Usage Examples for Lossy Floating-Point Compression Algorithms

To generate lossy algorithms with LC, preprocessors are needed. They must be fully specified (no regular
expressions are allowed) and cannot be searched for automatically as they require user-specified parameters
such as the error bound.
To find a good lossy compression algorithm for IEEE-754 32-bit single-precision floating-point data that
are quantized with a maximum point-wise absolute error bound of 0.01 and then losslessly compressed with
three components, enter:

./lc input.dat CR "QUANT_ABS_0_£32(0.01)" ".+ .+ R.+|C.+|H.+"
To do the same with a point-wise relative error bound, use:
./lc input.dat CR "QUANT_REL_O0_£32(0.01)" ".+ .+ R.+|C.+|H.+"

The preprocessors work with the CR, EX, and AL modes. However, since both EX and AL verify the result,
the default lossless verification will likely fail for lossy compression. LC includes a set of verifiers that can
be selected in lieu of the default verifier. For an point-wise absolute error bound of 0.001, use:

./1lc input.dat EX "QUANT_ABS_O_£32(0.001)" ".+ R.+|C.+|H.+" "MAXABS_£32(0.001)"

See the ./verifiers/ directory for additional available verifiers or the description below.
These quantizers replace any lost bits with zeros. If you prefer those bits be replaced by random data to
minimize autocorrelation, use:

./lc input.dat CR "QUANT_ABS_R_£f32(0.01)" ".+ .+ R.+|C.+|H.+"
or

./1c input.dat CR "QUANT_REL_R_£32(0.01)" ".+ .+ R.+|C.+|H.+"

6.2.4 Standalone Compressor and Decompressor Generation

Once you have determined a good lossless or lossy compression algorithm (e.g., “TUPL4 1 RRE_1CLOG_17),
you can generate a standalone compressor and a standalone decompressor that are optimized for this algo-
rithm.

To generate the CPU version, run:

./generate_standalone_CPU_compressor_decompressor.py "" "TUPL4_1 RRE_1 CLOG_1"

https://en.wikipedia.org/wiki/Pareto_front

To generate the GPU version, run:
./generate_standalone_GPU_compressor_decompressor.py "" "TUPL4_1 RRE_1 CLOG_1"
In either case, run the printed commands to compile the generated code. For the CPU, use:

g++ -03 -march=native -fopenmp -I. -std=c++17 -o compress compressor-standalone.cpp
g++ -03 -march=native -fopenmp -I. -std=c++17 -o decompress decompressor-standalone.cpp

For the GPU, use:

nvcc -03 -arch=sm_70 -DUSE_GPU -Xcompiler "-march=native -fopenmp" -I. -o compress compressor-standalon
nvcc -03 -arch=sm_70 -DUSE_GPU -Xcompiler "-march=native -fopenmp" -I. -o decompress decompressor-stand

You may have to adjust these commands and flags to your system and compiler. For instance, the sm_ 70
should be changed to match your GPU’s compute capability.
At this point, you can compress files with:

./compress input_file_name compressed_file_name [y]
and decompress them with:
./decompress compressed_file_name decompressed_file_name [y]

Both commands accept an optional “y” parameter at the end. If it is specified, the compressor and decom-
pressor will measure and print the throughput.

6.3 Available Components, Preprocessors, and Verifiers

All LC compression pipelines start with zero or more preprocessors and end with one or more components.
The preprocessors require parentheses after their names and may take parameters. The components do not
take any parameters and cannot have parentheses.

6.3.1 Available Components

The LC framework breaks the input data up into chunks of 16 kB, each of which is compressed independently
and in parallel using the selected components. All components are lossless. Most components support
different word sizes. The number at the end of their names indicates the word size in bytes. For example,
“_4” means the word size is 4 bytes (e.g., ints or floats). To structure the description of the components, we
group them into the following four categories: mutators, shufflers, predictors, and reducers. The goal of the
first three types is to better expose patterns so that the reducer components can compress the data more
effectively. Only reducer components make sense the the last pipeline stage.

Mutators computationally transform each value. This is done independently of other values and does not
compress the data.

e NUL: This component performs the identity transformation, meaning it outputs the input verbatim.
It is useful in that it allows longer pipelines to also cover algorithms with fewer stages.

e TCMS: This component converts each value from twos-complement to magnitude-sign representation,
which is often easier to compress because it tends to yield more leading zero bits.

e DBEFS: This component operates on IEEE-754 floating-point values. It first de-biases the exponent
and then rearranges the data fields from sign, exponent, fraction order to (de-biased) exponent, fraction,
sign order.

e DBESF: This component operates on IEEE-754 floating-point values. It first de-biases the exponent
and then rearranges the data fields from sign, exponent, fraction order to (de-biased) exponent, sign,
fraction order.

Shufflers rearrange the order of the values but perform no computation on them. Some shufflers reorder
the bits or bytes within a word. None of them compress the data.

e BIT: This component is often referred to as ”bit shuffle” or ”bit transpose”. It takes the most significant
bit of each value in the input and outputs them together, then it takes the second most significant bit of
each value and outputs them, and so on down to the least significant bit. This improves compressibility
if the values tend to have the same bits in certain positions.

e TUPLk: This component assumes the data to be a sequence of k-tuples, which it rearranges by listing
all first tuple values, then all second tuple values, and so on. For example, a tuple size of k = 3 changes
the linear sequence x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4 into x1, x2, x3, x4, yl, y2, y3, y4, z1,
22, z3, z4. This is beneficial as values belonging to the same "dimension” often correlate more with
each other than with other values from within the same tuple.

Predictors guess the next value by extrapolating it from prior values and then subtracting the prediction
from the actual value, which yields a residual sequence. If the predictions are accurate, the residuals cluster
around zero, making them easier to compress than the original data. Predictors per se do not compress the
data.

o DIFF: This component computes the difference sequence (also called ”delta modulation”) by subtract-
ing the previous value from the current value and outputting the resulting difference. If neighboring
values correlate with each other, this tends to produce a more compressible sequence.

o DIFFMS: This component computes the difference sequence like DIFF does but outputs the result in
sign-magnitude format, which is often more compressible because it tends to produce values with many
leading zero bits.

Reducers are the only components that can compress the data. They exploit various types of redundancies
to do so.

e CLOG: This component breaks the data up into 32 subchunks, determines the smallest amount of
leading zero bits of all values in a subchunk, records this count, and then stores only the remaining
bits of each value. This compresses data with leading zero bits.

e HCLOG: This component works like CLOG except it first applies the TCMS transformation to all
values in a subchunk that yield no leading zero bits when using CLOG.

e RLE: This component performs run-length encoding. It counts how many times a value appears in a
row. Then it counts how many non-repeating values follow. Both counts are emitted and followed by
a single instance of the repeating value as well as all non-repeating values.

e RRE: This component creates a bitmap in which each bit specifies whether the corresponding word in
the input is a repetition of the prior word or not. It outputs the non-repeating words and a compressed
version of the bitmap that is repeatedly compressed with the same algorithm.

e RZE: This component creates a bitmap in which each bit specifies whether the corresponding word in
the input is zero or not. It outputs the non-zero words and a compressed version of the bitmap like
RRE does.

6.3.2 Available Preprocessors

Preprocessors operate on the entire data (i.e., there is no chunking) and can be lossy or lossless. Some
preprocessors support different data types. The end of their names indicates the data type for which they
are designed. For example, “_ 32" means the preprocessor targets 32-bit floating-point values. To structure
the description of the preprocessors, we group them into lossy or lossless preprocessors.

Lossless

These quantizers support INFs and NaNs. The end of the quantizer name indicates the data type for which
it is designed.

e NUL: This preprocessor performs the identity transformation, meaning it outputs the input verbatim.
It takes no parameters.

e« LORI1D: This preprocessor performs a 1-dimensional Lorenzo transformation, i.e., it computes a dif-
ference sequence.

6.3.3 Lossy Quantizers

All quantizers require a parameter that specifies the maximally allowed error bound EB. They take an
optional second parameter specifying a threshold. Any value whose magnitude is at or above the threshold
is compressed losslessly and not quantized. The quantizers support INFs and NaNs. The end of the quantizer
name indicates the data type for which it is designed.

e QUANT ABS_ 0: These preprocessors quantize 32- and 64-bit floating-point values based on the
provided point-wise absolute error bound. All values that end up in the same quantization bin are

decompressed to the same value. These preprocessors guarantee that the original value V is decoded
to a value V’ such that V - EB <=V’ <=V + EB.

e QUANT_ABS_R: These preprocessors quantize 32- and 64-bit floating-point values based on the
provided point-wise absolute error bound. Each value from the same quantization bin is decompressed
to a random value within the provided error bound to minimize autocorrelation. These preprocessors
guarantee that the original value V is decoded to a value V’ such that V - EB <=V’ <=V + EB.

e QUANT _R2R: These preprocessors quantize 32- and 64-bit floating-point values just like their QUANT

counterparts except the provided error bound is first multiplied by the range of values occurring in the
input, where the range is the maximum value minus the minimum value.

e QUANT_REL_O0: These preprocessors quantize 32- and 64-bit floating-point values based on the
provided point-wise relative error bound. All values that end up in the same quantization bin are
decompressed to the same value. These preprocessors guarantee that the original value V is decoded
to a value V” with the same sign such that |V| / (1 + EB) <= |V’| <= |V]| * (1 + EB).

e QUANT_REL_R: These preprocessors quantize 32- and 64-bit floating-point values based on the
provided point-wise relative error bound. Each value from the same quantization bin is decompressed
to a random value within the provided error bound to minimize autocorrelation. These preprocessors
guarantee that the original value V is decoded to a value V’ with the same sign such that [V| / (1 +
EB) <= |V'| <= |V| * (1 + EB).

6.3.4 Available Verifiers

Some verifiers support different data types. The end of their names indicates the data type for which they
are designed.

e LOSSLESS: This verifier is the default. It passes verification if the decompressed output matches every
bit of the original input.

e PASS: This verifier always passes verification and is only useful for debugging.

e MAXABS: This verifier takes a point-wise absolute error bound as parameter and only passes verifi-
cation if every output value is within the specified error bound.

e MAXR2R: This verifier works like MAXABS except the provided error bound is first multiplied by
the range of values occurring in the input, where the range is the maximum value minus the minimum
value.

« MAXREL: This verifier takes a point-wise relative error bound as parameter and only passes verification
if every output value is within the specified error bound.

ABS

e MSE: This verifier takes a mean squared error as parameter and only passes verification if the mean
squared error of the output values is within the error bound.

o PSNR: This verifier takes a peak-signal-to-noise ratio (PSNR) as parameter and only passes verification
if the PSNR of the output values is above the specified lower bound.

For learning how to add your own components and preprocessors, please see https://github.com/burtscher/LC-
framework /?tab=readme-ov-file#tadding-and-removing-components.

https://github.com/burtscher/LC-framework/?tab=readme-ov-file#adding-and-removing-components
https://github.com/burtscher/LC-framework/?tab=readme-ov-file#adding-and-removing-components

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

7 TEZip

TEZip is not installed in the software envionment due to its comparatively complex dependencies and
compatibility with the GPUs in the testing envionment

contact: Amarjit Singh

TEZip(Time Evolutionary Zip) is developed in RIKEN R-CCS and designed to compress time evolutionary
data by using a deep learning for prediction. TEZip compression/decompression procedures consist of three
steps, model training, compression and decompression. For more details, please refer to the readthedocs
document full documentation

7.1 CLI Interface

1. Creating training data

Comandline options

[Learning_image_directory]: The directory path containing the training timages to be
dumped into the Hkl file (e.g., ./data)

[Output_directory]: Directory path to output Hkl file (e.g., ./data_hkl).

-v: Specifies the path of the directory used for verification among the directories
spectified in the first argument. Without this option, randomly determined.

python train_data_create.py [Learning_image_directory] [Output_directory]

B oW R B

2. Model Training
Comandline options
-l: Ezecute learning mechanism.
[Output_directory] is "Path to the output directory of the model”
[Directory_for_training_datal] is "Path to the training data directory(.hkl)"
-f: Forced CPU mode flag
"-f" to the runtime will disable the GPU and force it to run on the CPU
-v: Flag for screen output
"-v" to the runtime, the learning status, such as losses and epochs during
learning, will be output to the console.
python tezip.py -1 [Output_directory] [Directory_for_training_datal

HOH OB R R "R

3. Compression

Comandline options

—-c: Run the compression mechanism
[Model_directory] Path of the directory of trained models
[Directory_of_images_to_be_compressed] Directory path of the timage to be

compressed

[Output_directory] Output directory path for compressed data

-w: Specifying the keyframe switching criteria
SWP(Static Window-based Prediction)to specify how many keyframes to infer from
one keyframe of execution. If it is specified at the same time as -t 1t will
cause an error termination

-t: Specify the criteria for keyframe switching
Specify the threshold value of MSE(Mean Square Error) for exzecution switching in
DWP (Dynamic Window-based Prediction). If it 4is specified at the same time as
-w ¢t will cause an error termination

-p: Number of images for warm-up
The more keyframes you specify for LSTM recording the larger the
"key_frame.dat" will be and the smaller the "entropy.dat" will likely be.
However, if you set the number of keyframes to O or 1 when running DWP the MSE

TR R OR R R W W W R R R R R R

mailto:amarjitsingh@riken.jp
https://github.com/kento/TEZip/
https://tezip.readthedocs.io/en/latest/

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

R O R OR WO OB R R OW R OB W OW R TR HRR

#

|
3

v

-n:

will become larger and the final number of keyframes may become larger

: Selecting an error-bound mechanism

Select the error bouncing mechanism from the following four types

abs absolute error bound

rel relative bound ratio

absrel Do both of the above

pwrel point wise relative error bound
If you select multiple items or select non-existent items the #program will
exit with an error

: Threshold for error bouncing mechanism

Specify the tolerance threshold of the error bouncing mechanism. If "-m" is
specified as absrel, enter two values.

If an <nappropriate number of inputs are given for the one specified by -m
the program will exit with an error.If the input contains O the error
bouncing mechanism will not be executed and the data will be fully lossy

compressed.

: Forced CPU mode flag

By adding -f to the runtime you can disable the GPU and force it to rTun on
the CPU

Flag for screen output

When -v s added at runtime the status during execution such as the value
of MSE after inference and the time taken for the compression process will be
output to the comnsole

Flag to disable Entropy Coding for compression process

python tezip.py -c [Model_directory] [Directory_of_images_to_be_compressed]
[Output_directory] -p [Number_of_warm-up_sheets] -w or -t [-w
Number_of_inferences_to_be_made_from_a_single_keyframe , -t
MSE_threshold_for_keyframe_switching] -m [Error-bound_mechanism_name] -b
[Threshold_for_error_bouncing_mechanism]

4. Decompressoin
Comandline options

#

HOH RO R W R R W

U

v

Run the learning mechanism

[Model_directory] Directory path of trained models
[Directory_of_compressed_data] Directory path for compressed data (.dat), etc.
[Output_directory] Output directory path for unzipped data

: Forced CPU mode flag

By adding -f to the runtime, you can disable the GPU and force it to run on
the CPU.

Flag for screen output

By adding -v at runtime, the processing time during decompression s output
to the console

python tezip.py -u [Model_directory] [Directory_of_compressed_datal] [Output_directory]

7.2 C/C++ Interface
TEZip does not have its own C/C++ interface but may be called via LibPressio’s C/C++.

8 DCTZ

contact: Seung Woo Son

DCTZ is a lossy compressor based on DCT (discrete cosine transform) tailored to work with floating point
datasets, single- or double-precision, with an error-bound capability (primarily on relative error bound). The
compression pipeline has been adapted from JPEG.

8.1 CLI Interface

DCTZ has a single test program that goes through compression/decompression as a single test scenario.
There are two versions of test programs: dctz-ec-test and dctz-qt-test. dctz-ec-test is a more conservative
compressor, whereas dctz-qt-test includes an extra quantization process to improve compression ratios while
guaranteeing the user-defined error bounds. The test scripts, test-dctz.sh or test-dctz-f.sh, for a couple of
sample datasets are available under the “tests” folder in the DCTZ repository.

print help for dctz compressor

both dctz-ec-test and dctz-qt-test has the same CLI

dctz-ec-test —-help

Test case: ../dctz-ec-test -d|-f [err bound] [var name] [srcFilePath] [dimension sizes...]

commandline options

prectsion: -d [-f double or float
error bound: 1E-3, 1E-4, or 1E-5

war name: unused but

data file path

dimensions list

sample CLI for evaluating the CESM-ATM-taylor
the error bound is set to 1E-3
dctz-qt-test -f 1E-3 var CESM-ATM-tylor/1800x3600/CLDHGH_1_1800_3600.dat 3600 1800

The above command will generate a compressed file nmnamed CLDHGH_1_1800_3600.dat.z
and the decompressed file named CLDHGH_1_1800_3600.dat.z.T.

mailto:seungwoo_son@uml.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

9 LibPressio

contact: Robert Underwood

LibPressio provides a generic abstraction accross the various compressors including ALL of the compressors
listed above. It will eventually serve as the front end to FZ. In general, all features are supported from all
interfaces

The material presented here adapts a subset of the LibPressio tutorial. The full tutorial covers GPU based
compressors, using compressors with user provided metrics, usage with I/0O libraries, automatic optimization
of compressors with OptZConfig, and much more. You can also find full documentation and more creatives
uses of LibPressio.

Below we present the basics for the commandline, Python, C++, and C interfaces. We also have support
for R, Julia, and Rust.

9.1 CLI interface

LibPressio allows you to rapid experiment with various compressors

#print help for the libpressio command
pressio

load a 3d array of float, use SZ3 with an absolute error bound of le—4
and collect various metrics and print them out
pressio \

-i /usecases/Hurricane/Uf48.dat -d 500 -d 500 -d 100 -t float

-b compressor=sz3 -o abs=le-4

-m error_stat -m size -m time -M all

same but with an HDF5 file

pressio \
-i /path/to/foo.hdf5 -I /some/dataset
-b compressor=sz3 -o abs=le-4
-m error_stat -m size -m time -M all

same but with an numpy file
pressio \
-i /path/to/foo.npy -T numpy
-b compressor=sz3 -o abs=le-4
-m error_stat -m size -m time -M all

same but with ZFP, and just error statistics

pressio \
-i /usecases/Hurricane/Uf48.dat -d 500 -d 500 -d 100 -t float
-b compressor=zfp -o abs=1le-4
-m error_stat -M all

use ZFP's fized rate mode

pressio \
-i /usecases/Hurricane/Uf48.dat -d 500 -d 500 -d 100 -t float
-b compressor=zfp -o zfp:rate=13
-m error_stat -M all

SZ3 but with a REL error bound
pressio \
-i /usecases/Hurricane/Uf48.dat -d 500 -d 500 -d 100 -t float

mailto:runderwood@anl.gov
https://github.com/robertu94/libpressio_tutorial
https://robertu94.github.io/libpressio
https://github.com/robertu94/libpressio-interesting-scripts
https://github.com/robertu94/libpressio-interesting-scripts

39

40

41

42

43

44

46

47

48

20

21

22

23

24

25

-b compressor=zfp -o rel=le-4
-m error_stat -M all

#print the builtin help for ZFP
pressio -a help -b compressor=zfp

#print the settings configured for ZFP
pressio \

-a settings -0 all \

-b compressor=zfp -o rel=le-4

9.2 Python Interface

You can use pressio_new client:python sz3 /usecases/Hurricane/Uf48.dat to generate a starter code.
You can run pressio_new to see the list of available starter codes. The code that appears below is a com-
mmented version of what this tool outputs with one line added to compute error statistics:

import libpressio as 1lp
import numpy as np
from pprint import pprint

read in the file as a binary array
input = np.fromfile("/usecases/Hurricane/Uf48.dat", dtype=np.float32).reshape(100, 500, 500)

configure the compressor
compressor = lp.PressioCompressor.from_config({

"compressor_id": "pressio",
"early_config": {

"pressio:compressor": "sz3"
1,

"compressor_config": {
"pressio:abs": le-b5

}
b

run the compressor

decompressed = input.copy()

compressed = compressor.encode(input)

decompressed = compressor.decode(compressed, decompressed)

collect metrics results
pprint (compressor.get_metrics())

9.3 C++ Interface

You can use pressio_new client:cpp sz3 /usecases/Hurricane/Uf48.dat to generate a starter code.
You can run pressio_new to see the list of available starter codes. The code that appears below is a
commmented version of what this tool outputs with one line added to compute error statistics:

#include <libpressio_ext/cpp/libpressio.h>
#include <libpressio_meta.h>

#include <tostream>

#include <string>

using namespace std::string_literals;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

int main() {
//load 3rd party compressors definitions. These support compressors with licences that
//prevent it from being used with LibPressio directly (e.g. the GPL or a proritary licence)

pressio library;
libpressio_register_all();
pressio_compressor compressor = library.get_compressor("pressio");

//the data is a 3d array of type float. 100 is the slowest advancing dimension
//this is called column major order or fortran order

pressio_dtype type = pressio_float_dtype;

std: :vector<size_t> dims {500,500,100};

pressio_data metadata = pressio_data::owning(type, dims);

// while using an I/0 plugin is overkill here, we can change posiz to "hdf5"
// to load an HDF5 dataset, or "numpy" to read a .npy file.
pressio_io io = library.get_io("posix");
if (1i0) {
std::cerr << library.err_msg() << std::endl;
exit(library.err_code());
}
if (io->set_options ({
{"io:path", "/usecases/Hurricane/Uf48.dat"s},
) A{
std::cerr << io->error_msg() << std::endl;
exit(io->error_code());
}
pressio_data* input = io->read(&metadata);
pressio_data compressed = pressio_data::empty(pressio_byte_dtype, {});
pressio_data output = pressio_data::owning(type, dims);

//configure the compressor to use SZ3 with an absolute error bound.
//we can change sz3 to zfp here and choose what compressor to use
if (compressor->set_options ({
{"pressio:compressor", "sz3"},
{"pressio:abs", le-5}
WA
std::cerr << io->error_msg() << std::endl;
exit(io—>error_code());

3

//run the compressor

if (compressor->compress (input, &compressed) != 0) {
std: :cerr << compressor->error_msg() << std::endl;
exit (compressor->error_code()) ;

}

if (compressor->decompress (&compressed, &output) != 0) {
std: :cerr << compressor->error_msg() << std::endl;
exit (compressor->error_code());

}

//collect the metrics results and print them them to the screen

std::cout << compressor->get_metrics_results() << std::endl;

delete input;

61

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

94 C

interface

You can use pressio_new client:c sz3 /usecases/Hurricane/Uf48.dat to generate a starter code. You
can run pressio_new to see the list of available starter codes. The code that appears below is a commmented
version of what this tool outputs with one line added to compute error statistics:

#include
#include
#include
#include

int main

<stdlib.h>
<stdio.h>
<libpressio.h>
<libpressto_meta.h>

O+

struct pressio* library = pressio_instance();

//load 3rd party compressors definitions. These support compressors with licences that
//prevent it from being used with LibPressio directly (e.g. the GPL or a proritary licence)
libpressio_register_all();

//load the "pressio" meta compressor that provides some standardization about what
//compressors error bounds to support. For example, if a compressor support an ABS bound
//"pressio" will provide a REL bound for free
struct pressio_compressor* compressor = pressio_get_compressor(library, "pressio");
if (! compressor) {
fprintf (stderr, "’s\n", pressio_error_msg(library));
exit(pressio_error_code(library));

3

//the data is a 3d array of type float. 100 is the slowest advancing dimension
//this is called column major order or fortran order
enum pressio_dtype type = pressio_float_dtype;
size_t dims[] = {500,500,100};
struct pressio_data* metadata = pressio_data_new_owning(type,
sizeof (dims) /sizeof (dims[0]), dims);

// while using an I/0 plugin is overkill here, we can change posixz to "hdf5"
// to load an HDF5 dataset, or "numpy" to read a .npy file.
struct pressio_io* io = pressio_get_io(library, "posix");
if (1io) {
fprintf (stderr, "/s\n", pressio_error_msg(library));
exit(pressio_error_code(library));
}
struct pressio_options* io_opts = pressio_options_new();
pressio_options_set_string(io_opts, "io:path", "/usecases/Hurricane/Uf48.dat");
if (pressio_io_set_options(io, io_opts)) {
fprintf (stderr, "Ys\n", pressio_io_error_msg(io));
exit(pressio_io_error_code(io));
}
pressio_options_free(io_opts);
struct pressio_data* input = pressio_io_read(io,metadata);
if ('input) {
fprintf (stderr, "Ys\n", pressio_io_error_msg(io));
exit(pressio_io_error_code(io));
¥

pressio_data_free(metadata);

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

82

83

84

85

86

87

88

89

90

91

pressio_io_free(io);

//setup output locations for the compressed and decompressed data
struct pressio_data* compressed = pressio_data_new_empty(pressio_byte_dtype, 0, NULL);
struct pressio_data* output = pressio_data_new_owning(type,

sizeof (dims)/sizeof (dims[0]), dims);

//configure the compressor to use SZ3 with an absolute error bound.
//we can change sz3 to zfp here and choose what compressor to use
struct pressio_options* compressor_opts = pressio_options_new();
pressio_options_set_string(compressor_opts, "pressio:compressor", "sz3");
//this line was added to compute error statistics when decompression ©s Tun
pressio_options_set_string(compressor_opts, "pressio:metric", "error_stat");
pressio_options_set_double(compressor_opts, "pressio:abs", le-5);
if (pressio_compressor_set_options(compressor, compressor_opts)) {
fprintf (stderr, "%s\n", pressio_compressor_error_msg(compressor));
exit(pressio_compressor_error_code(compressor));
3

pressio_options_free(compressor_opts);

//Tun the compressor

if (pressio_compressor_compress(compressor, input, compressed) != 0) {
fprintf (stderr, "%s\n", pressio_compressor_error_msg(compressor));
exit(pressio_compressor_error_code (compressor));

}

if (pressio_compressor_decompress (compressor,compressed,output) != 0) {
fprintf (stderr, "/s\n", pressio_compressor_error_msg(compressor));
exit(pressio_compressor_error_code(compressor));

}

//collect the metrics results and print them them to the screen

struct pressio_options* metrics = pressio_compressor_get_metrics_results(compressor) ;
char* metrics_str = pressio_options_to_string(metrics);

fprintf (stdout, "%s\n", metrics_str);

free(metrics_str);

pressio_options_free(metrics);

//free memory
pressio_data_free(input);
pressio_data_free(compressed) ;
pressio_data_free(output);
pressio_compressor_release (compressor) ;
pressio_release(library);

	SZ2/SZ3
	cuSZ
	ZFP
	MGARD
	SPERR
	LC Framework
	TEZip
	DCTZ
	LibPressio

