Particle Beam Test for the GLAST-LAT Calibration

M.BRIGIDA, A.CALIANDRO, C.FAVUZZI, P.FUSCO, F.GARGANO, N.GIGLIETTO, F.LOPARCO, M.N.MAZZIOTTA, C.MONTE, S.RAINÒ AND P.SPINELLI FOR GLAST LAT COLLABORATION

Bari University and INFN-Bari

The GLAST Mission

GLAST Telescope measures the direction, energy and arrival time of celestial gamma rays

- LAT will observes gamma-rays covering the energy range ~20 MeV -300 GeV

 - GBM will detects transient events in the energy range ~20 keV – 20 MeV

Launch: 2008 Florida Orbit: 550 km, 28.5° inclination

Lifetime: 5 years (minimum)

GLAST Large Area Telescope (LAT)

16 identical towers

Si Tracker Tower SSDs pitch = 228 μ m 12 layers × 3% X₀ + 4 layers × 18% X₀ + 2 layers Total channels: 884736

ACD Segmented scintillator tiles 0.9997 efficiency

Grid (& Thermal Radiators)

Csl Calorimeter

Hodoscopic array 8.4 X₀; 8 planes × 12 bars 2.0 × 2.7 × 33.6 cm

3000 kg, 650 W 1.8 m \times 1.8 m \times 1.0 m

Beam Test Motivations LAT calibration on a beam after and before runs with cosmic ray at ground

Goals

Expose a LAT Calibration Unit (CU) to different beams:
 photons, electrons, protons, positrons
 energies from 500MeV to 300GeV
 different configurations (angle, impact point)

Verify the actual response of the instrument:

- Calibration
- Direction measurement & Angular Dispersion
- Energy reconstruction & energy resolution

Validate full LAT Monte-Carlo simulation

Beam Line @ CERN and GSI

T9 line - CERN Meyrin

Beam extracted from PS
e-, e+, p, π 0.5-10GeV/c

H4 line - CERN Prevessin

Beam extracted from SPS
e, p, π 10-300GeV/c

GSI Beam – ¹²₆C and ¹³¹₅₄Xe 1.5 GeV/n

The GLAST-LAT Calibration Unit

Beam Test Set-Up (@PS)

The gamma ray beam at the CERN PS T9 line was produced by bremsstrahlung of electrons through the upstream materials. A magnet has been used to separate electrons from photons. A beam dump has been used to stop electrons.

Tagged photon beam

- An external tracker (4 x-y view silicon strip detector) was used to track electrons upstream and downstream the magnet, read-out by means of an external DAQ
- Trigger on S4&Sfront & Cerenkovs
- External DAQ was synchronized with the CU one, then the data have been merged with the CU one
- Different electron beam energy in the range 0.5-2.5 GeV and magnetic field intensity have been used to provide a gamma spectrum to the CU below 2 GeV

Not tagged photon beam

- Trigger on Sfront & Cherenkov
- Full brems spectrum from 2.5GeV/c electron beam

The experimental setup @T9

v-tagger

magnet

y-tagger

Display of a candidate photon event **The FRED Event Display** Thin 2.7% R.L. Trays 7-18 +X 0 1 -0 1 2 3 4 Thick 18% R.L. 5 6 Trays 3-6 No Tungsten Trays 0-2

ID: 700001332-33

Photon beam spot

Data points are reconstructed gamma vertex positions Beam dispersion from electron data - 0.5 GeV: 14 mrad - 1.0 GeV: 9 mrad – 1.5 GeV: 7 mrad – 2.5 GeV: 4 mrad

Tagged γ energy

Gamma Tagged Energy = Beam energy – Electron energy

Tracker performance

The hit strip multiplicity for gammas (e+/e-) increases along the beam direction, following the development of e.m. shower in the tracker. The hit multiplicity is constant for non-e.m. interacting particles (protons) Events at normal

incidence

Angular Dispersion at 68%

The gamma angle has been calculated with respect to the beam direction

- The events taken at normal incidence and only those with two tracks associated with the vertex are used.
- Angular dispersion decreases with the the energy

Angular Dispersion at 68%

The events taken at different θ incidence (0, 30 and 50 deg)

Longitudinal CAL energy shower profile

Longitudinal CAL energy shower profile

Energy Calibration (electrons)

Conclusions

A huge amount of data has been collected with spare flight modules.

- High statistics data taking with different CU configurations (100M events collected)
- Analysis show that the overall parformance (angular dispersion) are in a good agreement with the mission requirements

Poster by C.Monte "Performance of the GLAST-LAT tracker: beam test results"

Beams

	PS	SPS	GSI
γ Tagged	0.05-1.5 GeV		
γ UnTagged	0-2.5 GeV		
e⁻	1.5 GeV	10,20,50,100,200,280 GeV	
e+	1 GeV		
π-	5 GeV	20 GeV	
р	6,10 GeV	20, 100 GeV	
¹² ₆ C			1.5 GeV/n
¹³¹ 54 Xe			1.5 GeV/n

Setup for electrons

