GLAST CERN 2006 Beamtest

DRAFT - Status Report

J. Bregeon for the Beamtest Team

GLAST Collaboration Meeting November 15^{th} , 2007

Instrument

Understood

- Angular resolution
- Energy resolution
- Backsplash
- Trigger efficiency: TKR, CAL, ACD
- CAL calibration (pedestals, xtalk, non-linearities)
- Ions : Quenching, CNO, Cluster width

Not Understood

- Absolute energy scale
- Number of TKR hits and Clusters
- TKR Cluster size
- Number of CAL CsI logs hit

MC Simulation

<u>Understood</u>

- Material audit: TKR and CAL
- Beam line geometry
- Hadronic physics list
- LowEnergy physics list and range cuts
- GEANT4 compared to other MC codes (GEANT3, EGS5)

Not Understood

- Possible extra material along beam line
- Review of the CU grid geometry
- Solution Remove the 4^{th} calorimeter
- EM shower profile

Angular resolution

Hadronic physics list

Sertini (E < 10 GeV) and QGSP (E < 10 GeV) models validated with beamtest data and tested to simulate a background run : no significant effect on the background rejection

Hadronic physics list

Sertini (E < 10 GeV) and QGSP (E < 10 GeV) models validated with beamtest data and tested to simulate a background run : no significant effect on the background rejection

Beamtest Analysis Status - p. 5/14

Absolute energy scale

<5%: Acceptable for E < 2.5 GeV, but >5%: an issue for E > 2.5 GeV

EM Shower profile

- The simulated EM shower profile is different from the one measured in both the TKR and CAL.
- The difference is really significant for the transverse profile.

HE Electron and BT systematics

Quantify the effects of the residual differences on the final science products

- Solution Working on the merit tuple backgroundv11r2
- Apply basic cuts to select a reasonnable set of electrons
 - $\rightarrow~10\%~{
 m p},\,90\%\,e^-$ and 20% efficiency for e^-
- Scale tuple according to beamtest data knowledge
 - Simple $\sim 10\%$ shift on the variables used for the cut : CalTransRms, CalXtalMaxEne, CalXtalsTrunc, CalEnergyRaw, CalLRmsAsym, CalCfpEnergy
- Apply the same cuts on the scaled tuple
 - $\rightarrow~20\%~{\rm p},\,80\%\,e^-$ and 10% efficiency for e^-
- \Rightarrow Selection efficiency and contamination are worse by a factor of 2 on the *scaled* tuple
- ⇒ In this simple case, Data-Mc discrepancies do have a significant impact on the analysis
- \Rightarrow This issue needs to be studied carefully

Plans

- effects of discrepancies on background rejection (data-like simulations, we MUST devise and show a plan here, we have been talking about this for too long now)
- how do we play with shower shape in g4?
- Develop procedures to cross check the discrepancies with on-orbit data (long term action item).
- Open discussion now, to complete this slide

Backup slides

follows

Photon Tagger

- PSF determined using Tagged photons is consistent with the one measured in FullBrehm mode.
- Tagged MC still to be understood

Energy Resolution

- Once you get rid of the systematic shift on the energy
- The energy resolution is within specs and well under controle

Trigger efficiency

Estimate of the tracker trigger efficiency

GEANT4 vs EGS5

Good Agreement for the EM shower development

Electrons 10 GeV

