
THREE POINT HELIX CHECK ERRORS
MIRIAM DIAMOND

AUGUST 9 2017

github issue 126

See last week’s software meeting for technical details

DOWN THE RABBIT-HOLE

 org.lcsim.recon.tracking.seedtracker.FastCheck►ThreePointHelixCheck

triplet-finding for track seeds

 For each of the 3 hits, calculates contribution to z error

 Then

 Compares total z error to (predicted – actual) z position of middle hit

 Implementing a proper MSerror makes ~no difference to tracking output. Why?

 Because even without any MSerror, dztot is far bigger than zpred-z[1], meaning no

seeds get thrown out here anyway

2

dztot += _nsig * MSerror;

lcsim z

(hps y)

DOWN THE RABBIT-HOLE

 Why is this potentially a problem?

 We do want to avoid throwing out decent candidates at seeding stage, but if we’re

not throwing out any seeds, we might as well not bother with this check at all

 Intuitively, dztot should be dominated by MSerror. But it is dominated by hit errors.

 Why are the hit errors so big?

3

1. Big _nsig

2. Big hit.getCovMatrix()[5]

3. Contributions summed linearly, not in quadrature

OPTIONS

A. “Make seeding cuts great again” to throw out some seeds

 Look at distributions of (phat.u) to get proper uncertainty for it in covariance matrix

 Revisit strip.du() values (issue 135)

 Perform dedicated studies to decide value of _nsig

B. Decide it’s OK to keep all seeds

 Simply eliminate dztot cut in ThreePointHelixCheck since it’s not accomplishing anything

 Proto-study: performed reco and CPU Time profiles with

 Aggressive (A): dztot summed in quadrature, _nsig=1

 Conservative (A): dztot summed in quadrature, _nsig=2.5

 (B)

4

OPTIONS

 ThreePointHelixCheck code that performs dztot cut takes up very little time
(~0.5% of total TrackerReconDriver)

 Other code in ThreePointHelixCheck, which performs min pT cut properly (still
needed!), takes longer

 Seeding cuts do eliminate a few tracks, but not many

 In data, more effect at low than at high pT

5

Tracks

(1700 MC Prompt A’ Events)

Tracks

(10K Data Run 5772 Events)

(B) 2217 11329

Conservative (A) 2216 11290

Aggressive (A) 2211 11084

OPTIONS

6

Run 5772 Data (10K evts)

Prompt A’ MC (1700 evts)

PROFILER: AGGRESSIVE (A)

7

PROFILER: (B)

8

WHERE “SHOULD” DZTOT CUT BE?

9

Prompt A’ MC (1700 evts) log

~ reasonable cut

WHERE “SHOULD” DZTOT CUT BE?

10

Seeds Kept: Aggressive (A)

Seeds Thrown Out: Aggressive (A)

d
z
t
o
t

MS

hits

MORE ON COVARIANCES

hit.getCovMatrix()[5] fetches z entry from matrix uncorrected for track dir’n

 Typical uncorrected covariance matrix: Typical corrected covariance matrix:

In uncorrected cov matrix calculation, uncertainty factor due to unknown track dir’n ~5x too big

11

0.3 -11.5 -0.6

-11.5 400.5 20.0

-0.6 20.0 2.0

6e-5 -2e-3 -1e-4

-2e-3 0.08 4e-3

-1e-4 4e-3 2e-4

MORE ON COVARIANCES

 But … reducing this factor causes side effect! More frequent error message:

org.hps.recon.tracking.TrackerReconDriver process :: Discarding track with bad HelicalTrackHit (correction

distance 0.000000, chisq penalty 0.000000)

 Why? org.lcsim.fit.helicaltrack.HelicalTrackCross.setTrackDirection (which corrects HelicalTrackHits)

has a `errok` check

 if check fails, calls resetTrackDirection, which puts correction and chi-squared to 0 instead of

setting them properly

 check relies partly on uncorrected covariance matrix cov!

 could try changing _eps arbitrarily, but would like to know rationale behind this check

12

