
THREE POINT HELIX CHECK ERRORS
MIRIAM DIAMOND

AUGUST 9 2017

github issue 126

See last week’s software meeting for technical details

DOWN THE RABBIT-HOLE

 org.lcsim.recon.tracking.seedtracker.FastCheck►ThreePointHelixCheck

triplet-finding for track seeds

 For each of the 3 hits, calculates contribution to z error

 Then

 Compares total z error to (predicted – actual) z position of middle hit

 Implementing a proper MSerror makes ~no difference to tracking output. Why?

 Because even without any MSerror, dztot is far bigger than zpred-z[1], meaning no

seeds get thrown out here anyway

2

dztot += _nsig * MSerror;

lcsim z

(hps y)

DOWN THE RABBIT-HOLE

 Why is this potentially a problem?

 We do want to avoid throwing out decent candidates at seeding stage, but if we’re

not throwing out any seeds, we might as well not bother with this check at all

 Intuitively, dztot should be dominated by MSerror. But it is dominated by hit errors.

 Why are the hit errors so big?

3

1. Big _nsig

2. Big hit.getCovMatrix()[5]

3. Contributions summed linearly, not in quadrature

OPTIONS

A. “Make seeding cuts great again” to throw out some seeds

 Look at distributions of (phat.u) to get proper uncertainty for it in covariance matrix

 Revisit strip.du() values (issue 135)

 Perform dedicated studies to decide value of _nsig

B. Decide it’s OK to keep all seeds

 Simply eliminate dztot cut in ThreePointHelixCheck since it’s not accomplishing anything

 Proto-study: performed reco and CPU Time profiles with

 Aggressive (A): dztot summed in quadrature, _nsig=1

 Conservative (A): dztot summed in quadrature, _nsig=2.5

 (B)

4

OPTIONS

 ThreePointHelixCheck code that performs dztot cut takes up very little time
(~0.5% of total TrackerReconDriver)

 Other code in ThreePointHelixCheck, which performs min pT cut properly (still
needed!), takes longer

 Seeding cuts do eliminate a few tracks, but not many

 In data, more effect at low than at high pT

5

Tracks

(1700 MC Prompt A’ Events)

Tracks

(10K Data Run 5772 Events)

(B) 2217 11329

Conservative (A) 2216 11290

Aggressive (A) 2211 11084

OPTIONS

6

Run 5772 Data (10K evts)

Prompt A’ MC (1700 evts)

PROFILER: AGGRESSIVE (A)

7

PROFILER: (B)

8

WHERE “SHOULD” DZTOT CUT BE?

9

Prompt A’ MC (1700 evts) log

~ reasonable cut

WHERE “SHOULD” DZTOT CUT BE?

10

Seeds Kept: Aggressive (A)

Seeds Thrown Out: Aggressive (A)

d
z
t
o
t

MS

hits

MORE ON COVARIANCES

hit.getCovMatrix()[5] fetches z entry from matrix uncorrected for track dir’n

 Typical uncorrected covariance matrix: Typical corrected covariance matrix:

In uncorrected cov matrix calculation, uncertainty factor due to unknown track dir’n ~5x too big

11

0.3 -11.5 -0.6

-11.5 400.5 20.0

-0.6 20.0 2.0

6e-5 -2e-3 -1e-4

-2e-3 0.08 4e-3

-1e-4 4e-3 2e-4

MORE ON COVARIANCES

 But … reducing this factor causes side effect! More frequent error message:

org.hps.recon.tracking.TrackerReconDriver process :: Discarding track with bad HelicalTrackHit (correction

distance 0.000000, chisq penalty 0.000000)

 Why? org.lcsim.fit.helicaltrack.HelicalTrackCross.setTrackDirection (which corrects HelicalTrackHits)

has a `errok` check

 if check fails, calls resetTrackDirection, which puts correction and chi-squared to 0 instead of

setting them properly

 check relies partly on uncorrected covariance matrix cov!

 could try changing _eps arbitrarily, but would like to know rationale behind this check

12

