
Tracking -- Propagation
• Goal: Propagate and store track parameters & covariance matrices at 

each sensor
• Calculate and store during GBL
• Store as persistent TrackStates, which are added to existing List<TrackState> 

associated with GBLTrack
• Maintain full backwards-compatibility

• Collapse into a single issue:
• 154 Track parameter and covariance propagation
• 54 Propagate covariance matrix correctly when changing reference 

point for perigee track representation
• 158 MS covariance matrix in HpsGblRefitter

• As cross-check of results: driver that (re-)calculates track params & 
covariances using existing GBL output
• Already started by Bradley in

11 A track should have track states at every SVT layer and the Ecal



Rationale
• Why calculate & store during GBL?

• Track params already calculated at each sensor for GBL fits
• For covariances, code stumps exist that can be completed
• Re-calculating after GBL is computationally expensive!

• Why at each sensor, rather than each layer?
• This is where GBL does its fits anyway
• Allows straightforward plotting of residuals
• If this uses too much memory/disk space, can later decide to only store states at 

some sensors / for some types of tracks / for calibrations

• What about track state at a vertex?
• Since one track can be used in multiple vertices, vertex-refitted params & 

covariances should be associated with the Vertex not the Track
• Will be addressed in another part of the code
• Tackle as a separate Issue at a later time



Using TrackState Object
• Why use TrackStates?

• TrackState object has everything we need
• List<TrackState> associated with a Track is of arbitrary length, so is easy to 

lengthen without breaking backwards-compatibility

• Each TrackState has a location code
• Currently store TrackStates only AtIP, AtLastHit, AtCalorimeter
• Assign new TrackStates to all have location code 0, write new method to fetch 

TrackState corresponding to a given sensor#


