Signatures of Dark Sectors at SeaQuest

ASHER BERLIN

SeaQuest

- Study Drell-Yan to measure sea quark content of proton.
- Started data taking this year.
- 10^{18} POT $\sim 35 \mathrm{ab}^{-1}$ in ~ 2 years of parasitic run.
- ECAL upgrade possible within the year.

displaced electrons (minimal background)

SHiP

	Location	Timeline	$E_{\text {beam }}(\mathrm{GeV})$	POT	Baseline (m)
SeaQuest	Fermilab	2017	120	$1.44 \times 10^{18} \rightarrow 10^{20} ?$	$5-10$
SHiP	CERN	$2026 ?$	400	2×10^{20}	$60-110$

Production from Protons

+ Drell-Yan at higher masses

Production from Protons

Displaced Electrons at SeaQuest

$10^{18}-10^{20}$ POT + decay + geometric acceptance

SeaQuest Reach

SeaQuest Reach

SeaQuest Reach

S. Gardner et al., arXiv:1509.00050

$$
\begin{align*}
N_{\mathrm{dec}}= & N_{0} \mathcal{B}\left(A^{\prime} \rightarrow \ell^{+} \ell^{-}\right) \exp \left(-\frac{l_{\mathrm{dump}}}{c \tau_{A^{\prime}}} \frac{m_{A^{\prime}}}{\left|\mathbf{p}_{A^{\prime}}\right|}\right) \\
& \times\left[1-\exp \left(-\frac{l_{\text {fid }}}{c \tau_{A^{\prime}}} \frac{m_{A^{\prime}}}{\left|\mathbf{p}_{A^{\prime}}\right|}\right)\right], \tag{36}
\end{align*}
$$

+ GEANT4

$$
\text { total efficiency }=\frac{m \Gamma}{N_{\mathrm{tot}}} \int_{\ell_{\min }}^{\ell_{\text {max }}} d \ell \sum_{i \in \operatorname{geom} . \operatorname{criteria}(\ell)} \frac{e^{-\frac{\ell \Gamma m}{p_{\ell i}}}}{p_{\ell i}}
$$

Displaced Muons at SeaQuest

S = leptophilic scalar

minimal model for ($\mathrm{g}-2$) μ

SeaQuest Reach

$10^{20} \mathrm{POT}+$ decay + geometric acceptance

