
SPEEDING UP THE TRACKING CODE
MIRIAM DIAMOND

JUNE 19 2017

github issue 117

EVIO TO LCIO PROFILING: TRACKER RECON DRIVER

I investigated speeding up:

 getHelixIntersection

 TwoPointCircleCheck

2

HELIX INTERSECTION: CURRENT CODE

 For each track seed (starting with hits triplet), Extend calls findHPSScatterPoints for
each possible track extension into each subsequent layer

 For each possible track extension, findHPSScatterPoints calls getHelixIntersection for
each sensor

 getHelixIntersection steps:

 Approximate calculation of helix intersection pt with sensor plane

 Determine whether intersection pt falls within boundaries of sensor, +/- isInside tolerance (1 mm)

 If so, proceed to iterative calculation (convergence precision ε =10-4 mm, typically requires 2-3
iterations)

 Determine whether more precise intersection pt is within boundaries of sensor

3

HELIX INTERSECTION: MODIFYING THE CODE

 I reduced #calls to getHelixIntersection by skipping sensors in layers >3 we
know the track won’t hit

 Assume the track hits top or bottom but not both

 Assume track cannot hit both hole and slot in same half-module

 I added doIterative switch to getHelixIntersection: when off, only performs
approximate calculation

 Turned it off for Extend steps, but back on for final track fits
4

iterative

[goat]

TWO POINT CIRCLE CHECK: CURRENT CODE

 For each valid pair of sectors (determined by Sectoring) in seed layers
(dictated by Strategy), algorithm goes through every possible hit pair

 constructs circle through the two points + max helix DCA

 then examines arc length and (r, z) of points

 Fundamentally different from standard ATLAS / CMS pair-finding that limits
initial combinatorics

 for each hit in outer sector, uses [ϕ + max DCA] to set a limited ϕ range of hits in inner
sector to examine

 then examines z of points

5

TWO POINT CIRCLE CHECK: MODIFYING THE CODE

 I considered replacing current algorithm with ATLAS / CMS pair-finding, but
current algorithm performs well despite combinatorics disadvantage

 Most TwoPointCircleCheck time is taken by CorrectHitPosition

 CheckHitSeed checks a hit (to maybe add to track seed) against every existing hit in seed,
calling TwoPointCircleCheck(hitToMaybeAdd, hitExisting) in loop over all hitExisting

 TwoPointCircleCheck corrects positions of hitToMaybeAdd and hitExisting, independently…
calculating same correction on hitToMaybeAdd for each hitExisting

 Calculating correction on hitToMaybeAdd only once per seed cuts execution time in ~half

6

ASSESSMENT

 Total time savings according to profiler

 Approximate vs iterative results for individual helix intersection points

 Performance studies: to discuss

 What quantities (impact parameters? residuals?)

 Designating “standard” files (data? MC?) for benchmarking

7

TIME SAVINGS

C
u
rre

n
t

M
o
d
ifie

d

8

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

910-6 m

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

1010-7 m

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

1110-7 m

HELIX MULTIPLE SCATTERING ERROR
MIRIAM DIAMOND

JUNE 19 2017

github issue 126

CURRENT CODE

 org.lcsim.recon.tracking.seedtracker.FastCheck ►ThreePointHelixCheck

triplet-finding for track seeds

 For each of the 3 hits, calculates contribution to z error

 Then

 Compares total z error to (predicted – actual) z position of middle hit

13

MODIFYING MULTIPLE SCATTERING ERROR TERM

 Replace 1. with quick approximation based on

 Momentum estimate

 Radius of curvature and slope of 3-point helix (already calculated in method)

 B-field (already required as input to method)

 Thickness (constant) of an SVT sensor

 Distances between hits

14

