
SPEEDING UP THE TRACKING CODE
MIRIAM DIAMOND

JUNE 19 2017

github issue 117

EVIO TO LCIO PROFILING: TRACKER RECON DRIVER

I investigated speeding up:

 getHelixIntersection

 TwoPointCircleCheck

2

HELIX INTERSECTION: CURRENT CODE

 For each track seed (starting with hits triplet), Extend calls findHPSScatterPoints for
each possible track extension into each subsequent layer

 For each possible track extension, findHPSScatterPoints calls getHelixIntersection for
each sensor

 getHelixIntersection steps:

 Approximate calculation of helix intersection pt with sensor plane

 Determine whether intersection pt falls within boundaries of sensor, +/- isInside tolerance (1 mm)

 If so, proceed to iterative calculation (convergence precision ε =10-4 mm, typically requires 2-3
iterations)

 Determine whether more precise intersection pt is within boundaries of sensor

3

HELIX INTERSECTION: MODIFYING THE CODE

 I reduced #calls to getHelixIntersection by skipping sensors in layers >3 we
know the track won’t hit

 Assume the track hits top or bottom but not both

 Assume track cannot hit both hole and slot in same half-module

 I added doIterative switch to getHelixIntersection: when off, only performs
approximate calculation

 Turned it off for Extend steps, but back on for final track fits
4

iterative

[goat]

TWO POINT CIRCLE CHECK: CURRENT CODE

 For each valid pair of sectors (determined by Sectoring) in seed layers
(dictated by Strategy), algorithm goes through every possible hit pair

 constructs circle through the two points + max helix DCA

 then examines arc length and (r, z) of points

 Fundamentally different from standard ATLAS / CMS pair-finding that limits
initial combinatorics

 for each hit in outer sector, uses [ϕ + max DCA] to set a limited ϕ range of hits in inner
sector to examine

 then examines z of points

5

TWO POINT CIRCLE CHECK: MODIFYING THE CODE

 I considered replacing current algorithm with ATLAS / CMS pair-finding, but
current algorithm performs well despite combinatorics disadvantage

 Most TwoPointCircleCheck time is taken by CorrectHitPosition

 CheckHitSeed checks a hit (to maybe add to track seed) against every existing hit in seed,
calling TwoPointCircleCheck(hitToMaybeAdd, hitExisting) in loop over all hitExisting

 TwoPointCircleCheck corrects positions of hitToMaybeAdd and hitExisting, independently…
calculating same correction on hitToMaybeAdd for each hitExisting

 Calculating correction on hitToMaybeAdd only once per seed cuts execution time in ~half

6

ASSESSMENT

 Total time savings according to profiler

 Approximate vs iterative results for individual helix intersection points

 Performance studies: to discuss

 What quantities (impact parameters? residuals?)

 Designating “standard” files (data? MC?) for benchmarking

7

TIME SAVINGS

C
u
rre

n
t

M
o
d
ifie

d

8

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

910-6 m

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

1010-7 m

APPROXIMATE VS ITERATIVE : HELIX INTERSECTION POINTS

1110-7 m

HELIX MULTIPLE SCATTERING ERROR
MIRIAM DIAMOND

JUNE 19 2017

github issue 126

CURRENT CODE

 org.lcsim.recon.tracking.seedtracker.FastCheck ►ThreePointHelixCheck

triplet-finding for track seeds

 For each of the 3 hits, calculates contribution to z error

 Then

 Compares total z error to (predicted – actual) z position of middle hit

13

MODIFYING MULTIPLE SCATTERING ERROR TERM

 Replace 1. with quick approximation based on

 Momentum estimate

 Radius of curvature and slope of 3-point helix (already calculated in method)

 B-field (already required as input to method)

 Thickness (constant) of an SVT sensor

 Distances between hits

14

