HELIX INTERSECTION CODE

MIRIAM DIAMOND

JUNE 12 2017

github issue 117

EVIOTO LCIO PROFILING: TRACKER RECON DRIVER

I investigated:

- Why so many calls to helix intersection code?
- Why does it take so long?
- Would speeding it up sacrifice too much accuracy?

CURRENT CODE

- For each track seed (hits triplet), Extend calls findHPSScatterPoints for each possible track extension into each subsequent layer
- For a given track, findHPSScatterPoints calls getHelixIntersection for each sensor
- getHelixIntersection steps:
 - Approximate calculation of helix intersection pt with sensor plane
 - Determine whether intersection pt falls within boundaries of sensor, +/- isInside tolerance (I mm)
 - If so, proceed to iterative calculation (convergence precision $\varepsilon = 10^{-4}$ mm, typically requires 2-3 iterations)
 - Determine whether more precise intersection pt is within boundaries of sensor

CURRENT CODE

ighter org.hps.recon.tracking.MultipleScattering.getHelixIntersection (org.lcsim.fit.helicaltrack.HelicalTrackFit, org.hp		15,145 ms (26.9%)	1829880
⇒ 🗃 org.hps.recon.tracking.TrackUtils.getHelixPlaneIntercept (org.lcsim.fit.helicaltrack.HelicalTrackFit, hep.phy		4,429 ms	(7.9%)	638006
☐ ☑ org.hps.recon.tracking.WTrack.getHelixAndPlaneIntercept (hep.physics.vec.Hep3Vector, hep.physics.vec.Hep3Vector)	iterative	2,688 ms	(4.8%)	638006
⊞ 🐿 org.hps.recon.tracking.WTrack.getHelixParametersAtPathLength (double, hep.physics.vec.Hep3Vector		1,152 ms	(2%)	638006
⊞ 🗃 org.hps.recon.tracking.WTrack. <init> (org.lcsim.fit.helicaltrack.HelicalTrackFit, double)</init>		463 ms	(0.8%)	638006
- Self time		112 ms	(0.2%)	638006
hep.physics.vec.BasicHep3Vector. <init> (double, double)</init>		11.9 ms	(0%)	638006
hep.physics.vec.VecOp.inverse (hep.physics.vec.Hep3Matrix)	[goat]	4,364 ms	(7.7%)	4297766
☐ ☐ org.lcsim.detector.Transform3D.transformed (hep.physics.vec.Hep3Vector)		1,486 ms	(2.6%)	4297766
🖽 🐿 org.lcsim.fit.helicaltrack.HelixUtils.PathToXPlane (org.lcsim.fit.helicaltrack.HelicalTrackFit, double, double, in		1,354 ms	(2.4%)	1829880
➡ ★ hep.physics.vec.VecOp.mult (hep.physics.vec.Hep3Matrix, hep.physics.vec.Hep3Vector)		910 ms	(1.6%)	6127646
☐ ☐ org.lcsim.fit.helicaltrack.HelixUtils.PointOnHelix (org.lcsim.fit.helicaltrack.HelicalTrackFit, double)		766 ms	(1.4%)	1829880
Self time		689 ms	(1.2%)	1829880
☐ ☐ org.lcsim.fit.helicaltrack.HelixUtils.Direction (org.lcsim.fit.helicaltrack.HelicalTrackFit, double)		509 ms	(0.9%)	1829880
☐ ☑ org.lcsim.detector.Transform3D.rotated (hep.physics.vec.Hep3Vector)		311 ms	(0.6%)	1829880

MODIFYING THE CODE

- I reduced #calls to getHelixIntersection by skipping sensors in layers >3 we know the track won't hit
 - Assume the track hits top or bottom but not both
 - Assume track cannot hit both hole and slot in same half-module
- I added dolterative switch to getHelixIntersection: when off, only performs approximate calculation
 - Turned it off for Extend steps, but back on for final track fits
- Assessment:
 - Approximate vs iterative results for individual helix intersection points (underway)
 - Time savings according to profiler (underway)
 - Performance studies (to do)

APPROXIMATE VS ITERATIVE: HELIX INTERSECTION POINTS

APPROXIMATE VS ITERATIVE: HELIX INTERSECTION POINTS

APPROXIMATE VS ITERATIVE: HELIX INTERSECTION POINTS

